5 Site: 3 [2021 PM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¯				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	12	0	13	0.0	0.007	1.4	LOSA	0.0	0.1	0.10	0.23	0.10	43.5
6	R2	11	0	1	0.0	0.007	6.3	LOSA	0.0	0.1	0.10	0.23	0.10	43.4
Appro	oach	13	0	14	0.0	0.007	1.8	NA	0.0	0.1	0.10	0.23	0.10	43.5
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.448	7.4	LOSA	2.6	18.1	0.46	0.98	0.56	40.1
9	R2	376	0	396	0.0	0.448	8.8	LOSA	2.6	18.1	0.46	0.98	0.56	36.6
Appro	oach	377	0	397	0.0	0.448	8.8	LOSA	2.6	18.1	0.46	0.98	0.56	36.6
North	West:	Ocean P	arade (N	IW)										
10	L2	425	0	447	0.0	0.258	3.5	LOSA	0.0	0.0	0.00	0.42	0.00	38.7
11	T1	32	0	34	0.0	0.258	0.1	LOSA	0.0	0.0	0.00	0.42	0.00	38.6
Appro	oach	457	0	481	0.0	0.258	3.3	NA	0.0	0.0	0.00	0.42	0.00	38.7
All Vehic	eles	847	0	892	0.0	0.448	5.7	NA	2.6	18.1	0.21	0.67	0.25	37.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:13 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

5 Site: 3 [2024 AM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	hEast:		arade (Sl		70	V/C	560		ven	- '''				KIII/II
5	T1	44	0	46	0.0	0.024	1.2	LOSA	0.0	0.1	0.02	0.23	0.02	43.8
6	R2	11	0	1	0.0	0.024	5.2	LOSA	0.0	0.1	0.02	0.23	0.02	43.7
Appr	oach	45	0	47	0.0	0.024	1.3	NA	0.0	0.1	0.02	0.23	0.02	43.8
North	nEast: I	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.352	6.8	LOSA	1.5	10.7	0.32	0.89	0.32	40.7
9	R2	332	0	349	0.0	0.352	7.3	LOSA	1.5	10.7	0.32	0.89	0.32	37.1
Appr	oach	333	0	351	0.0	0.352	7.3	LOSA	1.5	10.7	0.32	0.89	0.32	37.1
North	nWest:	Ocean F	Parade (N	W)										
10	L2	192	0	202	0.0	0.116	3.4	LOSA	0.0	0.0	0.00	0.42	0.00	38.8
11	T1	14	0	15	0.0	0.116	0.0	LOSA	0.0	0.0	0.00	0.42	0.00	38.6
Appr	oach	206	0	217	0.0	0.116	3.2	NA	0.0	0.0	0.00	0.42	0.00	38.8
All Vehic	cles	584	0	615	0.0	0.352	5.4	NA	1.5	10.7	0.18	0.68	0.18	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:14 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

5 Site: 3 [2024 PM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¯				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	13	0	14	0.0	0.008	1.4	LOSA	0.0	0.1	0.09	0.23	0.09	43.6
6	R2	1	0	1	0.0	0.008	6.2	LOSA	0.0	0.1	0.09	0.23	0.09	43.4
Appro	oach	14	0	15	0.0	0.008	1.7	NA	0.0	0.1	0.09	0.23	0.09	43.6
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.475	7.5	LOSA	2.9	20.5	0.47	0.98	0.58	40.1
9	R2	402	0	423	0.0	0.475	8.9	LOSA	2.9	20.5	0.47	0.98	0.58	36.6
Appro	oach	403	0	424	0.0	0.475	8.9	LOSA	2.9	20.5	0.47	0.98	0.58	36.6
North	West:	Ocean P	arade (N	IW)										
10	L2	393	0	414	0.0	0.244	3.5	LOSA	0.0	0.0	0.00	0.41	0.00	38.8
11	T1	39	0	41	0.0	0.244	0.1	LOSA	0.0	0.0	0.00	0.41	0.00	38.6
Appro	oach	432	0	455	0.0	0.244	3.2	NA	0.0	0.0	0.00	0.41	0.00	38.7
All Vehic	eles	849	0	894	0.0	0.475	5.9	NA	2.9	20.5	0.22	0.68	0.28	37.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:14 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

👼 Site: 3 [2026 AM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	43 1 44	0 0 0	45 1 46	0.0 0.0 0.0	0.023 0.023 0.023	1.2 4.9 1.3	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.01 0.01 0.01	0.23 0.23 0.23	0.01 0.01 0.01	43.8 43.7 43.8
North	nEast:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.301	6.8	LOSA	1.3	8.8	0.26	0.89	0.26	40.8
9	R2	296	0	312	0.0	0.301	7.0	LOSA	1.3	8.8	0.26	0.89	0.26	37.2
Appro	oach	297	0	313	0.0	0.301	7.0	LOSA	1.3	8.8	0.26	0.89	0.26	37.2
North	West:	Ocean P	arade (N	IW)										
10	L2	105	0	111	0.0	0.068	3.4	LOSA	0.0	0.0	0.00	0.40	0.00	38.9
11	T1	16	0	17	0.0	0.068	0.0	LOSA	0.0	0.0	0.00	0.40	0.00	38.7
Appro	oach	121	0	127	0.0	0.068	3.0	NA	0.0	0.0	0.00	0.40	0.00	38.9
All Vehic	cles	462	0	486	0.0	0.301	5.4	NA	1.3	8.8	0.17	0.70	0.17	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:15 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

5 Site: 3 [2026 PM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	12 1 13	0 0 0	13 1 14	0.0 0.0 0.0	0.007 0.007 0.007	1.2 5.0 1.5	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.05 0.05 0.05	0.24 0.24 0.24	0.05 0.05 0.05	43.6 43.5 43.6
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.175	6.9	LOSA	0.6	4.5	0.23	0.90	0.23	40.8
9 Appro	R2 oach	172 173	0	181 182	0.0	0.175 0.175	6.9	LOSA	0.6	4.5	0.23	0.90	0.23	37.2 37.2
North	west:	Ocean P	arade (N	IW)										
10 11	L2 T1	108 44	0 0	114 46	0.0	0.085 0.085	3.4 0.0	LOS A LOS A	0.0 0.0	0.0	0.00	0.33 0.33	0.00	39.1 38.9
Appro	oach	152	0	160	0.0	0.085	2.4	NA	0.0	0.0	0.00	0.33	0.00	39.0
All Vehic	cles	338	0	356	0.0	0.175	4.7	NA	0.6	4.5	0.12	0.62	0.12	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:15 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

👼 Site: 3 [2041 AM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	[Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 41	4.	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	arade (S	⊏)										
5	T1	42	0	44	0.0	0.023	1.2	LOSA	0.0	0.0	0.01	0.23	0.01	43.8
6	R2	1	0	1	0.0	0.023	4.8	LOSA	0.0	0.0	0.01	0.23	0.01	43.7
Appro	oach	43	0	45	0.0	0.023	1.3	NA	0.0	0.0	0.01	0.23	0.01	43.8
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.334	6.8	LOSA	1.5	10.2	0.25	0.89	0.25	40.8
9	R2	333	0	351	0.0	0.334	6.9	LOSA	1.5	10.2	0.25	0.89	0.25	37.2
Appro	oach	334	0	352	0.0	0.334	6.9	LOSA	1.5	10.2	0.25	0.89	0.25	37.2
North	West:	Ocean P	Parade (N	IW)										
10	L2	71	0	75	0.0	0.052	3.4	LOSA	0.0	0.0	0.00	0.35	0.00	39.0
11	T1	21	0	22	0.0	0.052	0.0	LOSA	0.0	0.0	0.00	0.35	0.00	38.9
Appro	oach	92	0	97	0.0	0.052	2.6	NA	0.0	0.0	0.00	0.35	0.00	39.0
All Vehic	cles	469	0	494	0.0	0.334	5.6	NA	1.5	10.2	0.18	0.72	0.18	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:16 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

5 Site: 3 [2041 PM (Site Folder: Option 3Ai)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 pach	34 1 35	0 0	36 1 37	0.0	0.018 0.018 0.018	1.2 5.1 1.3	LOS A LOS A NA	0.0	0.1 0.1 0.1	0.02 0.02 0.02	0.23 0.23 0.23	0.02 0.02 0.02	43.8 43.6 43.8
North	nEast:	Reserve	St (NE)											
9	R2	1 141 142	0 0	1 148 149	0.0	0.148 0.148 0.148	6.8 7.0	LOS A LOS A	0.5	3.7 3.7 3.7	0.25	0.90 0.90 0.90	0.25 0.25 0.25	40.8 37.1 37.2
Appro		Ocean P			0.0	0.146	7.0	LUSA	0.5	3.7	0.25	0.90	0.25	31.2
10 11	L2 T1	139 34	0 0	146 36	0.0	0.097 0.097	3.4 0.0	LOS A LOS A	0.0	0.0	0.00	0.37 0.37	0.00	39.0 38.8
Appro	oach	173	0	182	0.0	0.097	2.8	NA	0.0	0.0	0.00	0.37	0.00	38.9
Vehic	cles	350	0	368	0.0	0.148	4.3	NA	0.5	3.7	0.10	0.57	0.10	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

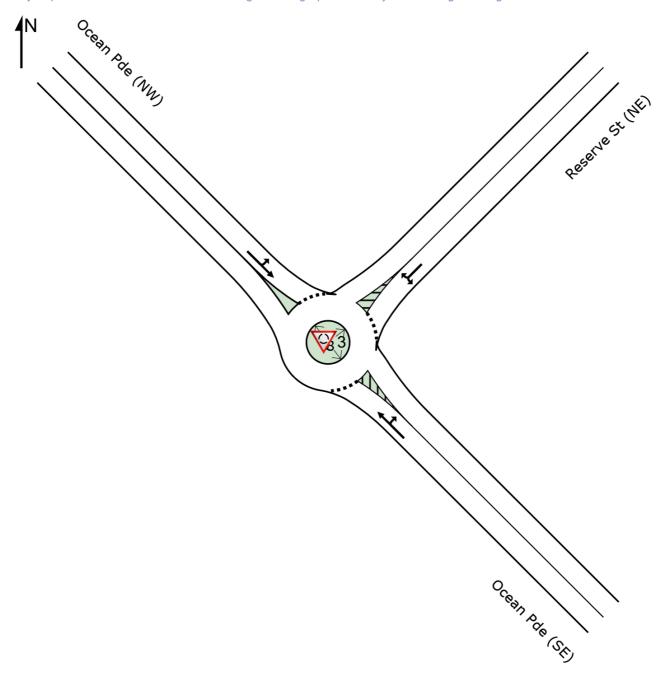
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:28:16 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

SITE LAYOUT

♥ Site: 3 [2021 AM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

♥ Site: 3 [2021 AM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

9 1 0111011	renoi	mance										
				Deg. Satn v/c					Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Ocean P	de (SE)											
37 1 38	0 0 0	39 1 40	0.0 0.0 0.0	0.060 0.060 0.060	8.9 11.7 9.0	LOS A LOS A	0.3 0.3 0.3	2.2 2.2 2.2	0.68 0.68 0.68	0.70 0.70 0.70	0.68 0.68 0.68	40.5 40.4 40.5
Reserve	St (NE)											
1 719 720	0 0 0	1 757 758	0.0 0.0 0.0	0.476 0.476 0.476	3.2 5.4 5.4	LOS A LOS A	3.6 3.6 3.6	25.3 25.3 25.3	0.10 0.10 0.10	0.57 0.57 0.57	0.10 0.10 0.10	
Ocean P	de (NW)											
213 11 224 982	0 0 0	224 12 236 1034	0.0 0.0 0.0	0.142 0.142 0.142 0.476	3.1 2.5 3.1 5.0	LOS A LOS A LOS A	0.9 0.9 0.9 3.6	6.4 6.4 6.4 25.3	0.02 0.02 0.02 0.10	0.44 0.44 0.44 0.54	0.02 0.02 0.02 0.10	38.5 42.6 38.7 38.2
	VOLU [Total veh/h Ocean P 37 1 38 Reserve 1 719 720 Ocean P 213 11 224	veh/h veh/h Ocean Pde (SE) 37	VOLUMES FLO [Total HV] Total veh/h veh/h veh/h Ocean Pde (SE) 37	VOLUMES FLOWS Total HV veh/h veh/h veh/h weh/h % Ocean Pde (SE) 37	VOLUMES FLOWS Satn	VOLUMES [Total HV] veh/h veh/h veh/h veh/h FLOWS veh/h Veh/h Satn Veh/s veh/s veh/s veh/h Delay 37 0 39 0.0 0.060 8.9 1 0 1 0 1 0.0 0.060 11.7 38 0 40 0.0 0.060 9.0 0.060 9.0 Reserve St (NE) 1 0 1 0.0 0.476 3.2 719 0 757 0.0 0.476 5.4 720 0 758 0.0 0.476 5.4 Ocean Pde (NW) 213 0 224 0.0 0.142 3.1 11 0 12 0.0 0.142 2.5 224 0 236 0.0 0.142 3.1 224 0 236 0.0 0.142 3.1	VOLUMES [Total HV] veh/h veh/h veh/h FLOWS (Total HV) veh/h Satn V/C sec Delay Service Ocean Pde (SE) 37 0 39 0.0 0.060 8.9 LOS A 1 0 1 0.0 0.060 11.7 LOS B 38 0 40 0.0 0.060 9.0 LOS A Reserve St (NE) 1 0 1 0.0 0.476 3.2 LOS A 719 0 757 0.0 0.476 5.4 LOS A 720 0 758 0.0 0.476 5.4 LOS A 5.4 LOS A Ocean Pde (NW) 213 0 224 0.0 0.142 3.1 LOS A 211 0 12 0.0 0.142 3.1 LOS A 224 0 236 0.0 0.142 3.1 LOS A	VOLUMES [Total HV] veh/h veh/h veh/h veh/h FLOWS veh/h Sath veh/sec Delay Service veh QUI [Veh. veh/sec Ocean Pde (SE) 37 0 39 0.0 0.060 8.9 LOS A 0.3 1 0 1 0.0 0.060 11.7 LOS B 0.3 38 0 40 0.0 0.060 9.0 LOS A 0.3 0.3 0.060 11.7 LOS B 0.3 0.3 0.0 0.060 9.0 LOS A 0.3 Reserve St (NE) 1 0 1 0.0 0.476 3.2 LOS A 3.6 719 0 757 0.0 0.476 5.4 LOS A 3.6 720 0 758 0.0 0.476 5.4 LOS A 3.6 0.9 11 0 12 0.0 0.142 3.1 LOS A 0.9 0.9 11 0 12 0.0 0.142 3.1 LOS A 0.9 0.9 0.142 3.1 LOS A 0.9 0.1	VOLUMES [Total HV] veh/h veh/h veh/h veh/h FLOWS veh/h weh/h veh/h weh/h w	VOLUMES [Total HV] veh/h veh/h veh/h veh/h veh/h FLOWS veh/h weh/h veh/h weh/h veh/h weh/h w	VOLUMES [Total HV] veh/h veh/h veh/h veh/h FLOWS veh/h weh/h w	VOLUMES [Total HV] veh/h veh/h FLOWS (Total HV) veh/h Satn veh/h Delay Service sec QUEUE (Veh. Dist) veh m Que keh/h Stop Rate Cycles No. Rate Cycles 37 0 39 0.0 0.060 8.9 LOS A 0.3 2.2 0.68 0.70 0.68 1 0 1 0.0 0.060 11.7 LOS B 0.3 2.2 0.68 0.70 0.68 38 0 40 0.0 0.060 9.0 LOS A 0.3 2.2 0.68 0.70 0.68 0.70 0.68 38 0 40 0.0 0.060 9.0 LOS A 0.3 2.2 0.68 0.70 0.68 Reserve St (NE) 1 0 1 0.0 0.476 3.2 LOS A 3.6 25.3 0.10 0.57 0.10 0.57 0.10 0.57 0.0 0.476 5.4 LOS A 3.6 25.3 0.10 0.57 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:07 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

♥ Site: 3 [2021 PM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean P	de (SE)											
2	T1	13	0	14	0.0	0.017	5.9	LOSA	0.1	0.6	0.50	0.55	0.50	41.8
3	R2	1	0	1	0.0	0.017	8.7	LOSA	0.1	0.6	0.50	0.55	0.50	41.7
Appro	oach	14	0	15	0.0	0.017	6.1	LOSA	0.1	0.6	0.50	0.55	0.50	41.8
North	East:	Reserve	St (NE)											
4	L2	1	0	1	0.0	0.288	3.3	LOSA	1.7	11.8	0.16	0.56	0.16	40.8
6	R2	385	0	405	0.0	0.288	5.5	LOSA	1.7	11.8	0.16	0.56	0.16	37.8
Appro	oach	386	0	406	0.0	0.288	5.5	LOSA	1.7	11.8	0.16	0.56	0.16	37.8
North	West:	Ocean P	de (NW)											
7	L2	490	0	516	0.0	0.331	3.1	LOSA	2.5	17.2	0.02	0.44	0.02	38.5
8	T1	34	0	36	0.0	0.331	2.5	LOSA	2.5	17.2	0.02	0.44	0.02	42.6
Appro	oach	524	0	552	0.0	0.331	3.1	LOSA	2.5	17.2	0.02	0.44	0.02	38.8
All Vehic	eles	924	0	973	0.0	0.331	4.1	LOSA	2.5	17.2	0.09	0.49	0.09	38.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:08 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

♥ Site: 3 [2024 AM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
South	nEast:	Ocean P	de (SE)											
2	T1	37	0	39	0.0	0.066	9.9	LOSA	0.4	2.5	0.72	0.73	0.72	40.0
3	R2	1	0	1	0.0	0.066	12.7	LOS B	0.4	2.5	0.72	0.73	0.72	40.0
Appro	oach	38	0	40	0.0	0.066	10.0	LOSA	0.4	2.5	0.72	0.73	0.72	40.0
North	East:	Reserve	St (NE)											
4	L2	1	0	1	0.0	0.537	3.2	LOSA	4.5	31.5	0.14	0.56	0.14	40.9
6	R2	799	0	841	0.0	0.537	5.5	LOSA	4.5	31.5	0.14	0.56	0.14	37.8
Appro	oach	800	0	842	0.0	0.537	5.5	LOSA	4.5	31.5	0.14	0.56	0.14	37.8
North	West:	Ocean P	de (NW)											
7	L2	247	0	260	0.0	0.167	3.1	LOSA	1.1	7.8	0.02	0.44	0.02	38.6
8	T1	16	0	17	0.0	0.167	2.5	LOSA	1.1	7.8	0.02	0.44	0.02	42.6
Appro	oach	263	0	277	0.0	0.167	3.1	LOSA	1.1	7.8	0.02	0.44	0.02	38.8
All Vehic	les	1101	0	1159	0.0	0.537	5.0	LOSA	4.5	31.5	0.13	0.54	0.13	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:09 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

♥ Site: 3 [2024 PM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	de (SE)											
2 3 Appro	T1 R2 oach	16 1 17	0 0 0	17 1 18	0.0 0.0 0.0	0.021 0.021 0.021	6.0 8.9 6.2	LOS A LOS A	0.1 0.1 0.1	0.7 0.7 0.7	0.51 0.51 0.51	0.56 0.56 0.56	0.51 0.51 0.51	41.8 41.7 41.7
North	nEast:	Reserve	St (NE)											
4 6 Appro	L2 R2 oach	1 402 403	0 0 0	1 423 424	0.0 0.0 0.0	0.305 0.305 0.305	3.3 5.6 5.6	LOS A LOS A	1.8 1.8 1.8	12.7 12.7 12.7	0.18 0.18 0.18	0.56 0.56 0.56	0.18 0.18 0.18	40.8 37.8 37.8
North	ıWest:	Ocean P	de (NW)											
7 8 Appro		379 40 419 839	0 0 0	399 42 441 883	0.0 0.0 0.0	0.265 0.265 0.265 0.305	3.1 2.5 3.0 4.3	LOS A LOS A LOS A	1.8 1.8 1.8	12.8 12.8 12.8 12.8	0.02 0.02 0.02 0.11	0.43 0.43 0.43 0.50	0.02 0.02 0.02 0.11	38.6 42.6 38.9 38.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:09 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

Site: 3 [2026 AM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	de (SE)											
2	T1	43	0	45	0.0	0.049	5.4	LOSA	0.2	1.6	0.45	0.54	0.45	41.9
3	R2	1	0	1	0.0	0.049	8.3	LOSA	0.2	1.6	0.45	0.54	0.45	41.9
Appro	oach	44	0	46	0.0	0.049	5.5	LOSA	0.2	1.6	0.45	0.54	0.45	41.9
North	East:	Reserve	St (NE)											
4	L2	1	0	1	0.0	0.215	3.2	LOSA	1.2	8.1	0.09	0.57	0.09	40.9
6	R2	302	0	318	0.0	0.215	5.4	LOSA	1.2	8.1	0.09	0.57	0.09	37.9
Appro	oach	303	0	319	0.0	0.215	5.4	LOSA	1.2	8.1	0.09	0.57	0.09	37.9
North	West:	Ocean P	de (NW)											
7	L2	112	0	118	0.0	0.082	3.1	LOSA	0.5	3.2	0.02	0.43	0.02	38.6
8	T1	16	0	17	0.0	0.082	2.5	LOSA	0.5	3.2	0.02	0.43	0.02	42.6
Appro	oach	128	0	135	0.0	0.082	3.0	LOSA	0.5	3.2	0.02	0.43	0.02	39.0
All Vehic	les	475	0	500	0.0	0.215	4.8	LOSA	1.2	8.1	0.11	0.53	0.11	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:10 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

Site: 3 [2026 PM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	de (SE)											
2 3 Appro	T1 R2 oach	12 1 13	0 0 0	13 1 14	0.0 0.0 0.0	0.013 0.013 0.013	4.6 7.5 4.8	LOS A LOS A	0.1 0.1 0.1	0.4 0.4 0.4	0.34 0.34 0.34	0.47 0.47 0.47	0.34 0.34 0.34	42.1 42.1 42.1
North	East:	Reserve	St (NE)											
4 6	L2 R2	1 171	0 0	1 180	0.0	0.139 0.139	3.3 5.6	LOS A LOS A	0.7 0.7	4.9 4.9	0.16 0.16	0.56 0.56	0.16 0.16	40.8 37.8
Appro		172	0	181	0.0	0.139	5.6	LOSA	0.7	4.9	0.16	0.56	0.16	37.8
North	iWest:	Ocean P	de (NW)											
7 8	L2 T1	128 43	0 0	135 45	0.0	0.109 0.109	3.1 2.5	LOS A LOS A	0.6 0.6	4.2 4.2	0.02 0.02	0.42 0.42	0.02 0.02	38.6 42.7
Appro	oach	171	0	180	0.0	0.109	3.0	LOSA	0.6	4.2	0.02	0.42	0.02	39.6
All Vehic	cles	356	0	375	0.0	0.139	4.3	LOSA	0.7	4.9	0.10	0.49	0.10	38.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:10 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

♥ Site: 3 [2041 AM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None) Roundabout

INPU VOLUI	JT	DEM										
[Total veh/h	MES HV] veh/h	FLO' [Total veh/h	AND WS HV] %	Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	CK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
cean Po	le (SE)											
42 1 43	0 0 0	44 1 45	0.0 0.0 0.0	0.049 0.049 0.049	5.7 8.5 5.7	LOS A LOS A	0.2 0.2 0.2	1.7 1.7 1.7	0.47 0.47 0.47	0.56 0.56 0.56	0.47 0.47 0.47	41.9 41.8 41.9
eserve S	St (NE)											
1 335 336	0 0 0	1 353 354	0.0 0.0 0.0	0.242 0.242 0.242	3.2 5.4 5.4	LOS A LOS A	1.3 1.3 1.3	9.4 9.4 9.4	0.11 0.11 0.11	0.57 0.57 0.57	0.11 0.11 0.11	40.9 37.9 37.9
Ocean Po	de (NW)											
74 21 95 474	0 0 0	78 22 100 499	0.0 0.0 0.0	0.061 0.061 0.061 0.242	3.1 2.5 3.0 5.0	LOS A LOS A LOS A	0.3 0.3 0.3	2.4 2.4 2.4 9.4	0.02 0.02 0.02 0.13	0.42 0.42 0.42 0.54	0.02 0.02 0.02 0.13	38.6 42.7 39.4 38.5
	42 1 43 eserve S 1 335 336 Ocean Po 74 21	Decean Pde (SE) 42	20cean Pde (SE) 42	Acean Pde (SE) 42	Acean Pde (SE) 42	Accean Pde (SE) 42	Accean Pde (SE) 42	Accean Pde (SE) 42	Accean Pde (SE) 42	Accean Pde (SE) 42	Accean Pde (SE) 42	Acean Pde (SE) 42

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:11 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

Site: 3 [2041 PM (Site Folder: Option 3Aii)]

Reserve Street / Ocean Parade Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV 1	DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¹				km/h
South	hEast:	Ocean P	de (SE)											
2	T1	35	0	37	0.0	0.035	4.5	LOSA	0.2	1.1	0.30	0.47	0.30	42.3
3	R2	1	0	1	0.0	0.035	7.3	LOSA	0.2	1.1	0.30	0.47	0.30	42.2
Appr	oach	36	0	38	0.0	0.035	4.5	LOSA	0.2	1.1	0.30	0.47	0.30	42.3
North	nEast:	Reserve	St (NE)											
4	L2	1	0	1	0.0	0.111	3.3	LOSA	0.5	3.8	0.14	0.57	0.14	40.9
6	R2	138	0	145	0.0	0.111	5.5	LOSA	0.5	3.8	0.14	0.57	0.14	37.8
Appr	oach	139	0	146	0.0	0.111	5.5	LOSA	0.5	3.8	0.14	0.57	0.14	37.9
North	nWest:	Ocean P	de (NW)											
7	L2	143	0	151	0.0	0.113	3.1	LOSA	0.6	4.3	0.02	0.43	0.02	38.6
8	T1	34	0	36	0.0	0.113	2.5	LOSA	0.6	4.3	0.02	0.43	0.02	42.7
Appr	oach	177	0	186	0.0	0.113	3.0	LOSA	0.6	4.3	0.02	0.43	0.02	39.3
All Vehic	cles	352	0	371	0.0	0.113	4.1	LOSA	0.6	4.3	0.09	0.49	0.09	39.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

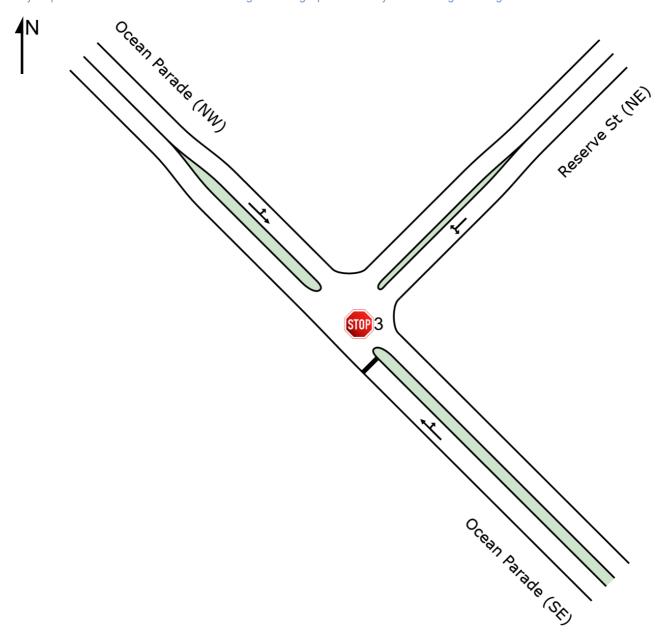
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 10:53:12 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean

SITE LAYOUT

Site: 3 [2021 AM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 3 [2021 AM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV 1	DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	39	0	41	0.0	0.100	13.9	LOS B	0.3	2.3	0.67	1.03	0.67	38.6
6	R2	1	0	11	0.0	0.100	16.3	LOS C	0.3	2.3	0.67	1.03	0.67	38.5
Appro	oach	40	0	42	0.0	0.100	14.0	LOS B	0.3	2.3	0.67	1.03	0.67	38.6
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.419	3.5	LOSA	2.9	20.5	0.07	0.47	0.07	42.1
9	R2	710	0	747	0.0	0.419	3.6	LOSA	2.9	20.5	0.07	0.47	0.07	38.2
Appro	oach	711	0	748	0.0	0.419	3.6	NA	2.9	20.5	0.07	0.47	0.07	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	205	0	216	0.0	0.121	3.4	LOSA	0.0	0.0	0.00	0.44	0.00	38.7
11	T1	9	0	9	0.0	0.121	0.0	LOSA	0.0	0.0	0.00	0.44	0.00	38.6
Appro	oach	214	0	225	0.0	0.121	3.3	NA	0.0	0.0	0.00	0.44	0.00	38.7
All Vehic	eles	965	0	1016	0.0	0.419	3.9	NA	2.9	20.5	0.08	0.49	0.08	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:27 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2021 PM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P			/0	V/C	366		Ven	- '''	_	_		KIII/II
5	T1	12	0	13	0.0	0.020	9.5	LOSA	0.1	0.5	0.46	0.93	0.46	40.1
6	R2	1	0	1	0.0	0.020	14.8	LOS B	0.1	0.5	0.46	0.93	0.46	40.0
Appro	oach	13	0	14	0.0	0.020	9.9	LOSA	0.1	0.5	0.46	0.93	0.46	40.1
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.236	3.6	LOSA	1.3	9.1	0.13	0.47	0.13	42.0
9	R2	390	0	411	0.0	0.236	3.7	LOSA	1.3	9.1	0.13	0.47	0.13	38.1
Appro	oach	391	0	412	0.0	0.236	3.7	NA	1.3	9.1	0.13	0.47	0.13	38.1
North	West:	Ocean P	arade (N	IW)										
10	L2	486	0	512	0.0	0.293	3.5	LOSA	0.0	0.0	0.00	0.43	0.00	38.7
11	T1	33	0	35	0.0	0.293	0.1	LOSA	0.0	0.0	0.00	0.43	0.00	38.6
Appro	oach	519	0	546	0.0	0.293	3.3	NA	0.0	0.0	0.00	0.43	0.00	38.7
All Vehic	les	923	0	972	0.0	0.293	3.5	NA	1.3	9.1	0.06	0.45	0.06	38.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:28 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2024 AM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	37 1 38	0 0 0	39 1 40	0.0 0.0 0.0	0.109 0.109 0.109	15.3 18.1 15.4	LOS C LOS C	0.3 0.3 0.3	2.4 2.4 2.4	0.72 0.72 0.72	1.03 1.03 1.03	0.72 0.72 0.72	38.0 38.0 38.0
North	East:	Reserve	St (NE)											
7 9	L2 R2	1 773	0	1 814	0.0	0.460 0.460	3.5 3.6	LOS A LOS A	3.4 3.4	23.6 23.6	0.11 0.11	0.47 0.47	0.11 0.11	42.0 38.2
Appro		774	0	815	0.0	0.460	3.6	NA	3.4	23.6	0.11	0.47	0.11	38.2
North	west:	Ocean P	arade (N	IW)										
10 11	L2 T1	206 17	0 0	217 18	0.0 0.0	0.126 0.126	3.4 0.0	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.42 0.42	0.00 0.00	38.8 38.6
Appro	oach	223	0	235	0.0	0.126	3.2	NA	0.0	0.0	0.00	0.42	0.00	38.8
All Vehic	cles	1035	0	1089	0.0	0.460	4.0	NA	3.4	23.6	0.11	0.48	0.11	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:28 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

👼 Site: 3 [2024 PM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	16 1 17	0 0 0	17 1 18	0.0 0.0 0.0	0.025 0.025 0.025	9.6 13.3 9.8	LOS A LOS A	0.1 0.1 0.1	0.6 0.6 0.6	0.46 0.46 0.46	0.94 0.94 0.94	0.46 0.46 0.46	40.1 40.0 40.1
North	East:	Reserve	St (NE)											
7 9	L2 R2	1 399	0	1 420	0.0	0.242 0.242	3.6 3.7	LOS A LOS A	1.3 1.3	9.4 9.4	0.14 0.14	0.47 0.47	0.14 0.14	42.0 38.1
Appro		400	0	421	0.0	0.242	3.7	NA	1.3	9.4	0.14	0.47	0.14	38.1
North	west:	Ocean P	arade (N	IW)										
10 11	L2 T1	384 38	0 0	404 40	0.0	0.238 0.238	3.5 0.1	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.41 0.41	0.00	38.8 38.6
Appro	oach	422	0	444	0.0	0.238	3.2	NA	0.0	0.0	0.00	0.41	0.00	38.7
All Vehic	cles	839	0	883	0.0	0.242	3.6	NA	1.3	9.4	0.08	0.45	0.08	38.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:29 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2026 AM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 pach	44 1 45	0 0 0	46 1 47	0.0 0.0 0.0	0.058 0.058 0.058	9.0 9.5 9.0	LOS A LOS A	0.2 0.2 0.2	1.4 1.4 1.4	0.41 0.41 0.41	0.95 0.95 0.95	0.41 0.41 0.41	40.4 40.3 40.4
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.188	3.5	LOSA	1.0	7.0	0.08	0.47	0.08	42.1
9	R2	316	0	333	0.0	0.188	3.6	LOSA	1.0	7.0	0.08	0.47	0.08	38.2
Appro	oach	317	0	334	0.0	0.188	3.6	NA	1.0	7.0	0.08	0.47	80.0	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	111	0	117	0.0	0.072	3.4	LOSA	0.0	0.0	0.00	0.40	0.00	38.9
11	T1	16	0	17	0.0	0.072	0.0	LOSA	0.0	0.0	0.00	0.40	0.00	38.7
Appro	oach	127	0	134	0.0	0.072	3.0	NA	0.0	0.0	0.00	0.40	0.00	38.8
All Vehic	eles	489	0	515	0.0	0.188	3.9	NA	1.0	7.0	0.09	0.50	0.09	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:30 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2026 PM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	hEast:	Ocean P	arade (S	E)										
5 6 Appre	T1 R2 oach	12 1 13	0 0 0	13 1 14	0.0 0.0 0.0	0.014 0.014 0.014	8.0 8.6 8.0	LOS A LOS A	0.0 0.0 0.0	0.3 0.3 0.3	0.28 0.28 0.28	0.93 0.93 0.93	0.28 0.28 0.28	40.7 40.6 40.7
North	nEast: I	Reserve	St (NE)											
7 9 Appro	L2 R2 oach	1 173 174	0 0 0	1 182 183	0.0 0.0 0.0	0.106 0.106 0.106	3.6 3.7 3.7	LOS A LOS A NA	0.5 0.5 0.5	3.6 3.6 3.6	0.13 0.13 0.13	0.47 0.47 0.47	0.13 0.13 0.13	42.0 38.1 38.1
North	nWest:	Ocean P	arade (N	IW)										
10 11 Appro		123 43 166 353	0 0 0	129 45 175 372	0.0 0.0 0.0	0.093 0.093 0.093 0.106	3.4 0.0 2.6 3.3	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0 3.6	0.00 0.00 0.00 0.08	0.34 0.34 0.34 0.43	0.00 0.00 0.00 0.08	39.0 38.9 39.0 38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:30 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2041 AM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appre	T1 R2 oach	42 1 43	0 0 0	44 1 45	0.0 0.0 0.0	0.056 0.056 0.056	9.1 9.4 9.1	LOS A LOS A	0.2 0.2 0.2	1.4 1.4 1.4	0.42 0.42 0.42	0.95 0.95 0.95	0.42 0.42 0.42	40.4 40.3 40.4
North	nEast:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.199	3.5	LOSA	1.1	7.5	0.10	0.47	0.10	42.0
9	R2	333	0	351	0.0	0.199	3.6	LOSA	1.1	7.5	0.10	0.47	0.10	38.2
Appr	oach	334	0	352	0.0	0.199	3.6	NA	1.1	7.5	0.10	0.47	0.10	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	70	0	74	0.0	0.051	3.4	LOSA	0.0	0.0	0.00	0.35	0.00	39.0
11	T1	21	0	22	0.0	0.051	0.0	LOSA	0.0	0.0	0.00	0.35	0.00	38.9
Appr	oach	91	0	96	0.0	0.051	2.6	NA	0.0	0.0	0.00	0.35	0.00	39.0
All Vehic	cles	468	0	493	0.0	0.199	3.9	NA	1.1	7.5	0.11	0.49	0.11	38.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:31 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2041 PM (Site Folder: Option 3Aiii)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	33	0	35	0.0	0.035	7.8	LOSA	0.1	0.9	0.25	0.95	0.25	40.8
6	R2	1	0	1	0.0	0.035	8.6	LOSA	0.1	0.9	0.25	0.95	0.25	40.7
Appro	oach	34	0	36	0.0	0.035	7.8	LOSA	0.1	0.9	0.25	0.95	0.25	40.8
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.083	3.5	LOSA	0.4	2.8	0.11	0.47	0.11	42.0
9	R2	137	0	144	0.0	0.083	3.6	LOSA	0.4	2.8	0.11	0.47	0.11	38.2
Appro	oach	138	0	145	0.0	0.083	3.6	NA	0.4	2.8	0.11	0.47	0.11	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	146	0	154	0.0	0.101	3.4	LOSA	0.0	0.0	0.00	0.37	0.00	38.9
11	T1	34	0	36	0.0	0.101	0.0	LOSA	0.0	0.0	0.00	0.37	0.00	38.8
Appro	oach	180	0	189	0.0	0.101	2.8	NA	0.0	0.0	0.00	0.37	0.00	38.9
All Vehic	eles	352	0	371	0.0	0.101	3.6	NA	0.4	2.8	0.07	0.47	0.07	38.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

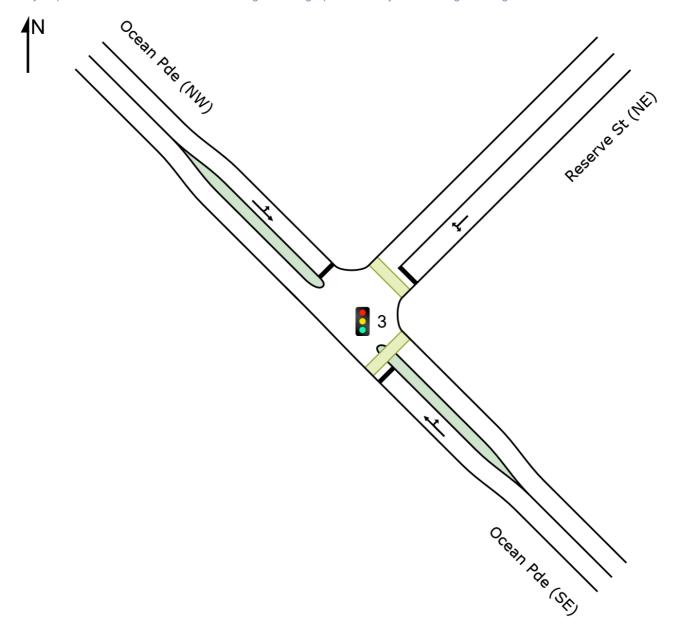
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:00:32 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

SITE LAYOUT


Site: 3 [2021 AM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 3 [2021 AM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehi	cle M	ovement	Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	40	0.0	42	0.0	0.149	18.2	LOS B	8.0	5.5	0.90	0.68	0.90	36.4
3	R2	1	0.0	1	0.0	0.149	21.6	LOS C	8.0	5.5	0.90	0.68	0.90	36.3
Appro	oach	41	0.0	43	0.0	0.149	18.3	LOS B	8.0	5.5	0.90	0.68	0.90	36.4
North	East:	Reserve S	St (NE)											
4	L2	1	0.0	1	0.0	0.681	10.9	LOS B	10.7	74.6	0.77	0.81	0.79	38.8
6	R2	684	0.0	720	0.0	* 0.681	11.0	LOS B	10.7	74.6	0.77	0.81	0.79	35.6
Appro	oach	685	0.0	721	0.0	0.681	11.0	LOS B	10.7	74.6	0.77	0.81	0.79	35.6
North	West:	Ocean Po	de (NW))										
7	L2	197	0.0	207	0.0	0.178	6.0	LOSA	1.6	11.1	0.39	0.59	0.39	37.7
8	T1	9	0.0	9	0.0	* 0.178	2.6	LOSA	1.6	11.1	0.39	0.59	0.39	41.7
Appro	oach	206	0.0	217	0.0	0.178	5.9	LOSA	1.6	11.1	0.39	0.59	0.39	37.9
All Vehic	eles	932	0.0	981	0.0	0.681	10.2	LOS B	10.7	74.6	0.69	0.76	0.71	36.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Moveme	ent Perf	ormano	e							
Mov ID Crossi	Input ng Vol.	Dem. Flow	Aver. Delay	Level of . Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
SouthEast:	Ocean Pde	e (SE)									
P1 Full	20	21	14.5	LOS B	0.0	0.0	0.85	0.85	176.8	211.0	1.19
NorthEast:	Reserve St	(NE)									
P2 Full	20	21	14.5	LOS B	0.0	0.0	0.85	0.85	176.0	210.0	1.19
All Pedestrian	40 s	42	14.5	LOS B	0.0	0.0	0.85	0.85	176.4	210.5	1.19

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2021 PM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehi	cle M	ovement	Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> Que	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	12	0.0	13	0.0	0.038	12.2	LOS B	0.2	1.2	0.83	0.61	0.83	38.6
3	R2	1	0.0	1	0.0	0.038	15.6	LOS B	0.2	1.2	0.83	0.61	0.83	38.5
Appro	oach	13	0.0	14	0.0	0.038	12.5	LOS B	0.2	1.2	0.83	0.61	0.83	38.6
North	East:	Reserve S	St (NE)											
4	L2	357	0.0	376	0.0	0.489	11.0	LOS B	4.3	30.4	0.79	0.77	0.79	38.8
6	R2	1	0.0	1	0.0	* 0.489	11.1	LOS B	4.3	30.4	0.79	0.77	0.79	35.6
Appro	oach	358	0.0	377	0.0	0.489	11.0	LOS B	4.3	30.4	0.79	0.77	0.79	38.8
North	West:	Ocean Po	de (NW))										
7	L2	476	0.0	501	0.0	0.426	6.0	LOSA	3.7	26.0	0.50	0.65	0.50	37.7
8	T1	25	0.0	26	0.0	* 0.426	2.6	LOSA	3.7	26.0	0.50	0.65	0.50	41.7
Appro	oach	501	0.0	527	0.0	0.426	5.8	LOSA	3.7	26.0	0.50	0.65	0.50	37.9
All Vehic	eles	872	0.0	918	0.0	0.489	8.1	LOSA	4.3	30.4	0.62	0.70	0.62	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Novem	ent Perf	formand	ce							
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE QUE [Ped ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec
SouthEast: Oc			360		peu	- ''			360	- ''	111/366
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23
NorthEast: Re	serve St	(NE)									
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2024 AM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	37	0.0	39	0.0	0.138	18.2	LOS B	0.7	5.1	0.90	0.68	0.90	36.4
3	R2	1	0.0	1	0.0	0.138	21.6	LOS C	0.7	5.1	0.90	0.68	0.90	36.3
Appro	oach	38	0.0	40	0.0	0.138	18.3	LOS B	0.7	5.1	0.90	0.68	0.90	36.4
North	East:	Reserve S	St (NE)											
4	L2	1	0.0	1	0.0	0.749	12.8	LOS B	13.4	94.0	0.82	0.87	0.91	38.1
6	R2	752	0.0	792	0.0	* 0.749	12.9	LOS B	13.4	94.0	0.82	0.87	0.91	34.9
Appro	oach	753	0.0	793	0.0	0.749	12.9	LOS B	13.4	94.0	0.82	0.87	0.91	34.9
North	West:	Ocean P	de (NW))										
7	L2	218	0.0	229	0.0	0.203	6.5	LOSA	1.9	13.4	0.43	0.61	0.43	37.5
8	T1	11	0.0	12	0.0	* 0.203	3.1	LOSA	1.9	13.4	0.43	0.61	0.43	41.5
Appro	oach	229	0.0	241	0.0	0.203	6.3	LOSA	1.9	13.4	0.43	0.61	0.43	37.7
All Vehic	eles	1020	0.0	1074	0.0	0.749	11.7	LOS B	13.4	94.0	0.74	0.80	0.80	35.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
SouthEast: Od	cean Pde	e (SE)									
P1 Full	20	21	14.5	LOS B	0.0	0.0	0.85	0.85	176.8	211.0	1.19
NorthEast: Re	serve S	t (NE)									
P2 Full	20	21	14.5	LOS B	0.0	0.0	0.85	0.85	176.0	210.0	1.19
All Pedestrians	40	42	14.5	LOS B	0.0	0.0	0.85	0.85	176.4	210.5	1.19

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2024 PM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehi	cle M	ovement	t Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> Que	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	16	0.0	17	0.0	0.048	12.3	LOS B	0.2	1.6	0.83	0.62	0.83	38.6
3	R2	1	0.0	1	0.0	0.048	15.6	LOS B	0.2	1.6	0.83	0.62	0.83	38.5
Appro	oach	17	0.0	18	0.0	0.048	12.5	LOS B	0.2	1.6	0.83	0.62	0.83	38.6
North	East:	Reserve S	St (NE)											
4	L2	395	0.0	416	0.0	0.541	11.2	LOS B	4.9	34.5	0.81	0.78	0.81	38.7
6	R2	1	0.0	1	0.0	* 0.541	11.3	LOS B	4.9	34.5	0.81	0.78	0.81	35.5
Appro	oach	396	0.0	417	0.0	0.541	11.2	LOS B	4.9	34.5	0.81	0.78	0.81	38.7
North	West:	Ocean Po	de (NW))										
7	L2	369	0.0	388	0.0	0.348	5.8	LOSA	2.7	19.0	0.46	0.63	0.46	37.8
8	T1	24	0.0	25	0.0	* 0.348	2.4	LOSA	2.7	19.0	0.46	0.63	0.46	41.8
Appro	oach	393	0.0	414	0.0	0.348	5.6	LOSA	2.7	19.0	0.46	0.63	0.46	38.0
All Vehic	eles	806	0.0	848	0.0	0.541	8.5	LOSA	4.9	34.5	0.64	0.70	0.64	38.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		AVERAGE QUE [Ped ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec
SouthEast: Oc			360		peu	- '''			360	- '''	111/366
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23
NorthEast: Re	serve St	t (NE)									
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2026 AM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehi	cle M	ovement	Perfor	rmance										
Mov ID	Turn	INP VOLU	MES	DEM/ FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	43	0.0	45	0.0	0.119	12.5	LOS B	0.6	4.2	0.85	0.66	0.85	38.6
3	R2	1	0.0	1	0.0	0.119	15.9	LOS B	0.6	4.2	0.85	0.66	0.85	38.5
Appro	oach	44	0.0	46	0.0	0.119	12.6	LOS B	0.6	4.2	0.85	0.66	0.85	38.6
North	East:	Reserve S	St (NE)											
4	L2	1	0.0	1	0.0	0.403	10.7	LOS B	3.4	23.9	0.76	0.75	0.76	38.9
6	R2	294	0.0	309	0.0	* 0.403	10.8	LOS B	3.4	23.9	0.76	0.75	0.76	35.7
Appro	oach	295	0.0	311	0.0	0.403	10.8	LOS B	3.4	23.9	0.76	0.75	0.76	35.7
North	West:	Ocean Po	de (NW))										
7	L2	112	0.0	118	0.0	0.139	7.3	LOSA	1.0	7.2	0.53	0.61	0.53	37.3
8	T1	16	0.0	17	0.0	* 0.139	3.9	LOSA	1.0	7.2	0.53	0.61	0.53	41.2
Appro	oach	128	0.0	135	0.0	0.139	6.9	LOSA	1.0	7.2	0.53	0.61	0.53	37.8
All Vehic	les	467	0.0	492	0.0	0.403	9.9	LOSA	3.4	23.9	0.70	0.71	0.70	36.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE	UE	Prop. Ef Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
SouthEast: Od	cean Pde	e (SE)									
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23
NorthEast: Re	serve St	(NE)									
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2026 PM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehi	cle M	ovement	Perfor	rmance										
Mov ID	Turn	INP VOLU	MES	DEM/ FLO	WS	Deg. Satn		Level of Service		EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	10	0.0	11	0.0	0.027	11.2	LOS B	0.1	1.0	0.79	0.59	0.79	39.0
3	R2	1	0.0	1	0.0	0.027	14.6	LOS B	0.1	1.0	0.79	0.59	0.79	38.9
Appro	oach	11	0.0	12	0.0	0.027	11.5	LOS B	0.1	1.0	0.79	0.59	0.79	39.0
North	East:	Reserve S	St (NE)											
4	L2	158	0.0	166	0.0	0.237	10.8	LOS B	1.8	12.5	0.73	0.71	0.73	38.9
6	R2	1	0.0	1	0.0	* 0.237	11.0	LOS B	1.8	12.5	0.73	0.71	0.73	35.7
Appro	oach	159	0.0	167	0.0	0.237	10.8	LOS B	1.8	12.5	0.73	0.71	0.73	38.9
North	West:	Ocean Po	de (NW))										
7	L2	127	0.0	134	0.0	0.234	9.4	LOSA	1.7	12.1	0.66	0.66	0.66	36.7
8	T1	43	0.0	45	0.0	* 0.234	6.0	LOSA	1.7	12.1	0.66	0.66	0.66	40.4
Appro	oach	170	0.0	179	0.0	0.234	8.6	LOSA	1.7	12.1	0.66	0.66	0.66	37.6
All Vehic	les	340	0.0	358	0.0	0.237	9.7	LOSA	1.8	12.5	0.70	0.68	0.70	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE	UE	Prop. Ef Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
SouthEast: Oc	ean Pde	e (SE)									
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23
NorthEast: Re	serve St	(NE)									
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2041 AM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 30 seconds (Site Practical Cycle Time)

Vehi	cle M	ovement	Perfor	rmance										
Mov ID	Turn	INP VOLU	MES	DEM/ FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	42	0.0	44	0.0	0.117	12.5	LOS B	0.6	4.1	0.85	0.66	0.85	38.6
3	R2	1	0.0	1	0.0	0.117	15.9	LOS B	0.6	4.1	0.85	0.66	0.85	38.5
Appro	oach	43	0.0	45	0.0	0.117	12.6	LOS B	0.6	4.1	0.85	0.66	0.85	38.6
North	East:	Reserve S	St (NE)											
4	L2	1	0.0	1	0.0	0.453	10.9	LOS B	3.9	27.5	0.78	0.76	0.78	38.8
6	R2	330	0.0	347	0.0	* 0.453	11.0	LOS B	3.9	27.5	0.78	0.76	0.78	35.6
Appro	oach	331	0.0	348	0.0	0.453	11.0	LOS B	3.9	27.5	0.78	0.76	0.78	35.6
North	West:	Ocean Po	de (NW))										
7	L2	73	0.0	77	0.0	0.131	9.1	LOSA	0.9	6.3	0.63	0.63	0.63	36.8
8	T1	21	0.0	22	0.0	* 0.131	5.7	LOSA	0.9	6.3	0.63	0.63	0.63	40.5
Appro	oach	94	0.0	99	0.0	0.131	8.4	LOSA	0.9	6.3	0.63	0.63	0.63	37.5
All Vehic	les	468	0.0	493	0.0	0.453	10.6	LOS B	3.9	27.5	0.75	0.73	0.75	36.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance													
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		AVERAGE QUE [Ped ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S			
ped/h ped/h sec ped m sec m m/sec SouthEast: Ocean Pde (SE)											111/300		
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23		
NorthEast: Re	NorthEast: Reserve St (NE)												
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23		
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 3 [2041 PM (Site Folder: Option 3Aiv)]

Reserver Street / Ocean Parade

Site Category: (None)

Vehicle Movement Performance														
Mov ID	Turn	n INPUT VOLUMES		DEMAND FLOWS		Deg. Satn	Aver. Level of Delay Service		95% BACK OF QUEUE		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Ocean Po	de (SE)											
2	T1	34	0.0	36	0.0	0.072	10.5	LOS B	0.4	3.0	0.78	0.62	0.78	39.4
3	R2	1	0.0	1	0.0	0.072	13.9	LOS B	0.4	3.0	0.78	0.62	0.78	39.3
Appro	oach	35	0.0	37	0.0	0.072	10.6	LOS B	0.4	3.0	0.78	0.62	0.78	39.4
North	NorthEast: Reserve St (NE)													
4	L2	128	0.0	135	0.0	0.212	11.5	LOS B	1.5	10.5	0.75	0.71	0.75	38.6
6	R2	1	0.0	1	0.0	* 0.212	11.6	LOS B	1.5	10.5	0.75	0.71	0.75	35.4
Appro	oach	129	0.0	136	0.0	0.212	11.5	LOS B	1.5	10.5	0.75	0.71	0.75	38.6
North	West:	Ocean Po	de (NW))										
7	L2	144	0.0	152	0.0	0.204	8.1	LOSA	1.6	11.1	0.59	0.63	0.59	37.1
8	T1	34	0.0	36	0.0	* 0.204	4.7	LOSA	1.6	11.1	0.59	0.63	0.59	41.0
Appro	oach	178	0.0	187	0.0	0.204	7.4	LOSA	1.6	11.1	0.59	0.63	0.59	37.8
All Vehic	eles	342	0.0	360	0.0	0.212	9.3	LOSA	1.6	11.1	0.67	0.66	0.67	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

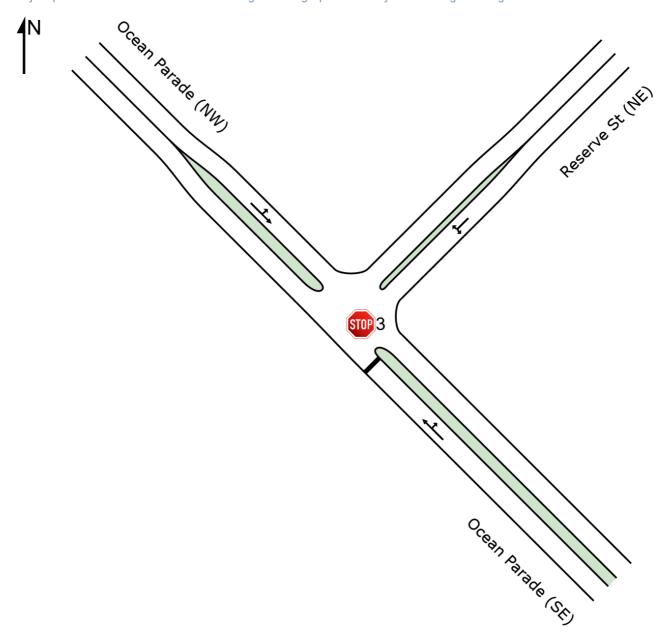
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance													
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec		
ped/h ped/h sec ped m sec m m/ SouthEast: Ocean Pde (SE)										111/366			
P1 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.9	211.0	1.23		
NorthEast: Reserve St (NE)													
P2 Full	20	21	9.6	LOS A	0.0	0.0	0.80	0.80	171.1	210.0	1.23		
All Pedestrians	40	42	9.6	LOSA	0.0	0.0	0.80	0.80	171.5	210.5	1.23		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)


Pedestrian movement LOS values are based on average delay per pedestrian movement.

SITE LAYOUT

Site: 3 [2021 AM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 3 [2021 AM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	SouthEast: Ocean Parade (SE)													
5 6 Appre	T1 R2 oach	39 1 40	0 0 0	41 1 42	0.0 0.0 0.0	0.099 0.099 0.099	13.9 16.3 13.9	LOS B LOS C LOS B	0.3 0.3 0.3	2.3 2.3 2.3	0.67 0.67 0.67	1.03 1.03 1.03	0.67 0.67 0.67	38.6 38.5 38.6
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.418	3.5	LOSA	2.9	20.3	0.08	0.47	0.08	42.1
9	R2	706	0	743	0.0	0.418	3.6	LOSA	2.9	20.3	0.08	0.47	0.08	38.2
Appr	oach	707	0	744	0.0	0.418	3.6	NA	2.9	20.3	0.08	0.47	0.08	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	211	0	222	0.0	0.126	3.4	LOSA	0.0	0.0	0.00	0.43	0.00	38.7
11	T1	11	0	12	0.0	0.126	0.0	LOSA	0.0	0.0	0.00	0.43	0.00	38.6
Appr	oach	222	0	234	0.0	0.126	3.3	NA	0.0	0.0	0.00	0.43	0.00	38.7
All Vehic	cles	969	0	1020	0.0	0.418	3.9	NA	2.9	20.3	0.09	0.49	0.09	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:17 AM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean
Pde.sip9

Site: 3 [2021 PM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	12 1 13	0 0 0	13 1 14	0.0 0.0 0.0	0.019 0.019 0.019	9.2 14.1 9.6	LOS A LOS A	0.1 0.1 0.1	0.4 0.4 0.4	0.44 0.44 0.44	0.93 0.93 0.93	0.44 0.44 0.44	40.2 40.1 40.2
North	nEast:	Reserve	St (NE)											
7 9 Appro	L2 R2 oach	1 359 360	0 0 0	1 378 379	0.0 0.0 0.0	0.216 0.216 0.216	3.5 3.6 3.6	LOS A LOS A NA	1.2 1.2 1.2	8.2 8.2 8.2	0.11 0.11 0.11	0.47 0.47 0.47	0.11 0.11 0.11	42.0 38.2 38.2
		Ocean P	arade (N	IW)										
10 11 Appro		483 27 510 883	0 0 0	508 28 537 929	0.0 0.0 0.0	0.288 0.288 0.288 0.288	3.5 0.1 3.3 3.5	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0 8.2	0.00 0.00 0.00 0.05	0.43 0.43 0.43	0.00 0.00 0.00 0.05	38.7 38.5 38.7 38.5
Vehic	JIES													

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:18 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2024 AM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	[Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	37	0	39	0.0	0.119	16.3	LOS C	0.4	2.6	0.74	1.02	0.74	37.7
6	R2	11	0	11	0.0	0.119	19.0	LOS C	0.4	2.6	0.74	1.02	0.74	37.6
Appro	oach	38	0	40	0.0	0.119	16.4	LOS C	0.4	2.6	0.74	1.02	0.74	37.7
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.480	3.5	LOSA	3.6	25.5	0.10	0.47	0.10	42.0
9	R2	810	0	853	0.0	0.480	3.6	LOSA	3.6	25.5	0.10	0.47	0.10	38.2
Appro	oach	811	0	854	0.0	0.480	3.6	NA	3.6	25.5	0.10	0.47	0.10	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	198	0	208	0.0	0.119	3.4	LOSA	0.0	0.0	0.00	0.43	0.00	38.8
11	T1	13	0	14	0.0	0.119	0.0	LOSA	0.0	0.0	0.00	0.43	0.00	38.6
Appro	oach	211	0	222	0.0	0.119	3.2	NA	0.0	0.0	0.00	0.43	0.00	38.8
All Vehic	eles	1060	0	1116	0.0	0.480	4.0	NA	3.6	25.5	0.10	0.48	0.10	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:19 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2024 PM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM. FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	East.	veh/h Ocean P	veh/h	veh/h	%	v/c	sec		veh	m				km/h
			•	,										
5	T1	16	0	17	0.0	0.025	9.4	LOSA	0.1	0.6	0.45	0.94	0.45	40.2
6	R2	1	0	1	0.0	0.025	13.1	LOS B	0.1	0.6	0.45	0.94	0.45	40.1
Appro	oach	17	0	18	0.0	0.025	9.7	LOS A	0.1	0.6	0.45	0.94	0.45	40.2
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.231	3.6	LOSA	1.3	8.9	0.13	0.47	0.13	42.0
9	R2	383	0	403	0.0	0.231	3.7	LOSA	1.3	8.9	0.13	0.47	0.13	38.1
Appro	oach	384	0	404	0.0	0.231	3.7	NA	1.3	8.9	0.13	0.47	0.13	38.1
North	West:	Ocean P	arade (N	IW)										
10	L2	393	0	414	0.0	0.240	3.5	LOSA	0.0	0.0	0.00	0.42	0.00	38.7
11	T1	32	0	34	0.0	0.240	0.1	LOSA	0.0	0.0	0.00	0.42	0.00	38.6
Appro	oach	425	0	447	0.0	0.240	3.2	NA	0.0	0.0	0.00	0.42	0.00	38.7
All Vehic	les	826	0	869	0.0	0.240	3.6	NA	1.3	8.9	0.07	0.45	0.07	38.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:20 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2026 AM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	[Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	44	0	46	0.0	0.056	8.9	LOSA	0.2	1.4	0.39	0.95	0.39	40.5
6	R2	1	0	1	0.0	0.056	9.4	LOSA	0.2	1.4	0.39	0.95	0.39	40.4
Appro	oach	45	0	47	0.0	0.056	8.9	LOSA	0.2	1.4	0.39	0.95	0.39	40.5
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.178	3.5	LOSA	0.9	6.5	0.08	0.47	0.08	42.1
9	R2	299	0	315	0.0	0.178	3.6	LOSA	0.9	6.5	0.08	0.47	0.08	38.2
Appro	oach	300	0	316	0.0	0.178	3.6	NA	0.9	6.5	0.08	0.47	0.08	38.2
North	West:	Ocean F	arade (N	IW)										
10	L2	110	0	116	0.0	0.070	3.4	LOSA	0.0	0.0	0.00	0.40	0.00	38.9
11	T1	15	0	16	0.0	0.070	0.0	LOSA	0.0	0.0	0.00	0.40	0.00	38.7
Appro	oach	125	0	132	0.0	0.070	3.0	NA	0.0	0.0	0.00	0.40	0.00	38.8
All Vehic	cles	470	0	495	0.0	0.178	3.9	NA	0.9	6.5	0.09	0.50	0.09	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:21 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2026 PM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m -				km/h
South	nEast:	Ocean P	arade (S	E)										
5	T1	10	0	11	0.0	0.012	8.0	LOSA	0.0	0.3	0.28	0.93	0.28	40.7
6	R2	1	0	1	0.0	0.012	8.6	LOSA	0.0	0.3	0.28	0.93	0.28	40.6
Appro	oach	11	0	12	0.0	0.012	8.0	LOSA	0.0	0.3	0.28	0.93	0.28	40.7
North	East:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.103	3.6	LOSA	0.5	3.5	0.13	0.47	0.13	42.0
9	R2	168	0	177	0.0	0.103	3.7	LOSA	0.5	3.5	0.13	0.47	0.13	38.1
Appro	oach	169	0	178	0.0	0.103	3.7	NA	0.5	3.5	0.13	0.47	0.13	38.1
North	West:	Ocean P	arade (N	IW)										
10	L2	121	0	127	0.0	0.091	3.4	LOSA	0.0	0.0	0.00	0.34	0.00	39.0
11	T1	42	0	44	0.0	0.091	0.0	LOSA	0.0	0.0	0.00	0.34	0.00	38.9
Appro	oach	163	0	172	0.0	0.091	2.6	NA	0.0	0.0	0.00	0.34	0.00	39.0
All Vehic	eles	343	0	361	0.0	0.103	3.3	NA	0.5	3.5	0.07	0.42	0.07	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:22 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

👼 Site: 3 [2041 AM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appre	T1 R2 oach	42 1 43	0 0 0	44 1 45	0.0 0.0 0.0	0.056 0.056 0.056	9.1 9.5 9.2	LOS A LOS A	0.2 0.2 0.2	1.4 1.4 1.4	0.42 0.42 0.42	0.95 0.95 0.95	0.42 0.42 0.42	40.4 40.3 40.4
North	nEast:	Reserve	St (NE)											
7	L2	1	0	1	0.0	0.200	3.5	LOSA	1.1	7.5	0.10	0.47	0.10	42.0
9	R2	335	0	353	0.0	0.200	3.6	LOSA	1.1	7.5	0.10	0.47	0.10	38.2
Appr	oach	336	0	354	0.0	0.200	3.6	NA	1.1	7.5	0.10	0.47	0.10	38.2
North	West:	Ocean P	arade (N	IW)										
10	L2	76	0	80	0.0	0.054	3.4	LOSA	0.0	0.0	0.00	0.36	0.00	39.0
11	T1	21	0	22	0.0	0.054	0.0	LOSA	0.0	0.0	0.00	0.36	0.00	38.9
Appr	oach	97	0	102	0.0	0.054	2.7	NA	0.0	0.0	0.00	0.36	0.00	39.0
All Vehic	cles	476	0	501	0.0	0.200	3.9	NA	1.1	7.5	0.11	0.49	0.11	38.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:23 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

Site: 3 [2041 PM (Site Folder: Option 3Av)]

Reserve Street / Ocean Parade Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Ocean P	arade (S	E)										
5 6 Appro	T1 R2 oach	33 1 34	0 0 0	35 1 36	0.0 0.0 0.0	0.035 0.035 0.035	7.8 8.6 7.9	LOS A LOS A	0.1 0.1 0.1	0.9 0.9 0.9	0.25 0.25 0.25	0.95 0.95 0.95	0.25 0.25 0.25	40.8 40.7 40.8
North	nEast:	Reserve	St (NE)											
7 9	L2	1	0	1	0.0	0.086	3.5	LOSA	0.4	2.9	0.11	0.47	0.11	42.0
Appro	R2 oach	141 142	0	148 149	0.0	0.086	3.6	LOS A NA	0.4	2.9	0.11	0.47	0.11	38.2
North	west:	Ocean P	arade (N	IW)										
10 11	L2 T1	145 34	0 0	153 36	0.0	0.101 0.101	3.4 0.0	LOS A LOS A	0.0 0.0	0.0 0.0	0.00	0.37 0.37	0.00	38.9 38.8
Appro	oach	179	0	188	0.0	0.101	2.8	NA	0.0	0.0	0.00	0.37	0.00	38.9
All Vehic	cles	355	0	374	0.0	0.101	3.6	NA	0.4	2.9	0.07	0.47	0.07	38.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

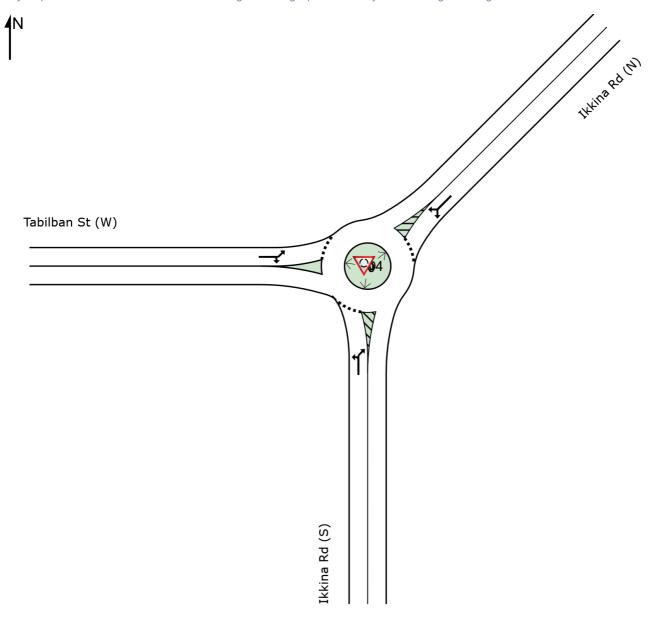
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Wednesday, 10 August 2022 11:15:24 AM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\3 - P5288.001M Reserve St - Ocean Pde.sip9

SITE LAYOUT

▽ Site: 4 [2021 AM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

♥ Site: 4 [2021 AM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	a Rd (S)												
1 3a	L2 R1	1 19	0 2	1 20	0.0 10.5	0.026 0.026	6.6 9.4	LOS A LOS A	0.1 0.1	1.0 1.0	0.56 0.56	0.67 0.67	0.56 0.56	45.7 36.5
Appro	oach	20	2	21	10.0	0.026	9.3	LOSA	0.1	1.0	0.56	0.67	0.56	37.2
North	East:	Ikkina Ro	l (N)											
24a	L1	11	1	12	9.1	0.327	4.4	LOSA	2.1	14.6	0.05	0.63	0.05	40.2
26a	R1	507	0	534	0.0	0.327	7.2	LOSA	2.1	14.6	0.05	0.63	0.05	50.3
Appro	oach	518	1	545	0.2	0.327	7.1	LOS A	2.1	14.6	0.05	0.63	0.05	50.1
West	: Tabill	oan St (W	V)											
10a	L1	173	0	182	0.0	0.129	4.4	LOSA	8.0	5.3	0.12	0.47	0.12	53.0
12	R2	4	0	4	0.0	0.129	8.1	LOSA	8.0	5.3	0.12	0.47	0.12	49.2
Appro	oach	177	0	186	0.0	0.129	4.5	LOSA	8.0	5.3	0.12	0.47	0.12	53.0
All Vehic	les	715	3	753	0.4	0.327	6.5	LOSA	2.1	14.6	0.08	0.59	0.08	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:37 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2021 PM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfoi	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		_evel of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1	L2	4	0	4	0.0	0.028	5.7	LOSA	0.1	0.9	0.48	0.64	0.48	47.1
3a	R1	21	0	22	0.0	0.028	8.4	LOSA	0.1	0.9	0.48	0.64	0.48	40.1
Appro	oach	25	0	26	0.0	0.028	7.9	LOSA	0.1	0.9	0.48	0.64	0.48	41.7
North	East:	Ikkina Rd	(N)											
24a	L1	18	0	19	0.0	0.245	4.3	LOSA	1.4	10.0	0.02	0.64	0.02	40.7
26a	R1	376	0	396	0.0	0.245	7.2	LOSA	1.4	10.0	0.02	0.64	0.02	50.4
Appro	oach	394	0	415	0.0	0.245	7.0	LOSA	1.4	10.0	0.02	0.64	0.02	50.2
West	: Tabill	ban St (W	/)											
10a	L1	413	0	435	0.0	0.287	4.4	LOSA	2.0	13.8	0.14	0.46	0.14	53.0
12	R2	1	0	1	0.0	0.287	8.1	LOSA	2.0	13.8	0.14	0.46	0.14	49.2
Appro	oach	414	0	436	0.0	0.287	4.4	LOSA	2.0	13.8	0.14	0.46	0.14	53.0
All		833	0	877	0.0	0.287	5.8	LOSA	2.0	13.8	0.09	0.55	0.09	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Vehicles

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:39 PM

♥ Site: 4 [2024 AM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.018	5.2	LOSA	0.1	0.6	0.42	0.61	0.42	47.4
3a	R1	16	0	17	0.0	0.018	7.8	LOSA	0.1	0.6	0.42	0.61	0.42	40.5
Appro	oach	17	0	18	0.0	0.018	7.7	LOSA	0.1	0.6	0.42	0.61	0.42	41.1
North	East:	Ikkina Rd	l (N)											
24a	L1	12	4	13	33.3	0.187	4.7	LOSA	1.0	7.2	0.02	0.64	0.02	39.8
26a	R1	287	0	302	0.0	0.187	7.2	LOSA	1.0	7.2	0.02	0.64	0.02	50.4
Appro	oach	299	4	315	1.3	0.187	7.1	LOSA	1.0	7.2	0.02	0.64	0.02	50.1
West	: Tabill	oan St (W	/)											
10a	L1	196	0	206	0.0	0.139	4.4	LOSA	8.0	5.6	0.10	0.47	0.10	53.2
12	R2	1	0	1	0.0	0.139	8.1	LOSA	0.8	5.6	0.10	0.47	0.10	49.4
Appro	oach	197	0	207	0.0	0.139	4.4	LOSA	8.0	5.6	0.10	0.47	0.10	53.2
All Vehic	les	513	4	540	0.8	0.187	6.1	LOSA	1.0	7.2	0.06	0.57	0.06	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:39 PM

♥ Site: 4 [2024 PM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Ikkir	na Rd (S)												
1	L2	2	0	2	0.0	0.023	5.8	LOSA	0.1	8.0	0.49	0.64	0.49	46.8
3a	R1	18	0	19	0.0	0.023	8.4	LOSA	0.1	0.8	0.49	0.64	0.49	39.7
Appro	oach	20	0	21	0.0	0.023	8.2	LOSA	0.1	8.0	0.49	0.64	0.49	40.8
North	East:	Ikkina Rd	l (N)											
24a	L1	21	2	22	9.5	0.260	4.4	LOSA	1.5	10.8	0.03	0.63	0.03	40.4
26a	R1	393	2	414	0.5	0.260	7.2	LOSA	1.5	10.8	0.03	0.63	0.03	50.4
Appro	oach	414	4	436	1.0	0.260	7.0	LOSA	1.5	10.8	0.03	0.63	0.03	50.1
West	: Tabil	ban St (W	V)											
10a	L1	390	0	411	0.0	0.269	4.4	LOSA	1.8	12.8	0.12	0.46	0.12	53.1
12	R2	2	0	2	0.0	0.269	8.1	LOSA	1.8	12.8	0.12	0.46	0.12	49.3
Appro	oach	392	0	413	0.0	0.269	4.4	LOSA	1.8	12.8	0.12	0.46	0.12	53.1
All Vehic	les	826	4	869	0.5	0.269	5.8	LOSA	1.8	12.8	0.08	0.55	0.08	51.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:40 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2026 AM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	a Rd (S)												
1 3a	L2 R1	1 22	0 1	1 23	0.0 4.5	0.024 0.024	5.2 7.9	LOS A LOS A	0.1 0.1	0.8 0.8	0.42 0.42	0.62 0.62	0.42 0.42	47.3 39.5
Appro		23	1	24	4.3	0.024	7.8	LOSA	0.1	0.8	0.42	0.62	0.42	40.0
North	East:	Ikkina Ro	l (N)											
24a	L1	5	0	5	0.0	0.180	4.3	LOSA	1.0	6.8	0.02	0.64	0.02	40.6
26a	R1	285	0	300	0.0	0.180	7.2	LOSA	1.0	6.8	0.02	0.64	0.02	50.3
Appro	oach	290	0	305	0.0	0.180	7.1	LOS A	1.0	6.8	0.02	0.64	0.02	50.3
West	: Tabill	oan St (W	V)											
10a	L1	98	0	103	0.0	0.075	4.4	LOSA	0.4	2.8	0.12	0.47	0.12	53.1
12	R2	1	0	1	0.0	0.075	8.1	LOSA	0.4	2.8	0.12	0.47	0.12	49.3
Appro	oach	99	0	104	0.0	0.075	4.5	LOSA	0.4	2.8	0.12	0.47	0.12	53.0
All Vehic	les	412	1	434	0.2	0.180	6.5	LOSA	1.0	6.8	0.06	0.60	0.06	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 $\,$ | Copyright $\,$ © 2000-2020 Akcelik and Associates Pty Ltd $\,$ | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:40 PM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2026 PM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	a Rd (S)												
1 3a	L2 R1	1 27	0 0	1 28	0.0	0.026 0.026	4.5 7.1	LOS A LOS A	0.1 0.1	0.8 0.8	0.30 0.30	0.60 0.60	0.30 0.30	47.8 41.1
Appro		28	0	29	0.0	0.026	7.0	LOSA	0.1	0.8	0.30	0.60	0.30	41.5
North	East:	Ikkina Ro	I (N)											
24a	L1	10	5	11	50.0	0.099	4.8	LOSA	0.5	3.7	0.02	0.64	0.02	39.5
26a	R1	143	5	151	3.5	0.099	7.2	LOSA	0.5	3.7	0.02	0.64	0.02	50.2
Appro	oach	153	10	161	6.5	0.099	7.0	LOSA	0.5	3.7	0.02	0.64	0.02	49.8
West	: Tabill	oan St (W	/)											
10a	L1	148	0	156	0.0	0.112	4.4	LOSA	0.6	4.2	0.13	0.47	0.13	53.0
12	R2	1	0	1	0.0	0.112	8.1	LOSA	0.6	4.2	0.13	0.47	0.13	49.2
Appro	oach	149	0	157	0.0	0.112	4.5	LOSA	0.6	4.2	0.13	0.47	0.13	53.0
All Vehic	les	330	10	347	3.0	0.112	5.9	LOSA	0.6	4.2	0.09	0.56	0.09	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:41 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2041 AM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	ı: Ikkir	na Rd (S)												
1 3a Appro	L2 R1	1 26 27	0 0 0	1 27 28	0.0 0.0 0.0	0.029 0.029 0.029	5.4 8.0 7.9	LOS A LOS A	0.1 0.1 0.1	0.9 0.9 0.9	0.44 0.44 0.44	0.63 0.63 0.63	0.44 0.44 0.44	47.1 40.1 40.5
North	East:	Ikkina Ro	I (N)											
24a 26a Appro	R1	16 322 338	5 0 5	17 339 356	31.3 0.0 1.5	0.211 0.211 0.211	7.2 7.0	LOS A LOS A	1.2 1.2 1.2	8.4 8.4 8.4	0.02 0.02 0.02	0.64 0.64 0.64	0.02 0.02 0.02	39.9 50.4 50.1
		ban St (W		330	1.0	0.211	7.0	LOGA	1.2	0.4	0.02	0.04	0.02	30.1
10a 12	L1 R2	68 1	0 0	72 1	0.0	0.054 0.054	4.4 8.1	LOS A LOS A	0.3 0.3	2.0 2.0	0.13 0.13	0.46 0.46	0.13 0.13	53.0 49.2
Appro	oach	69	0	73	0.0	0.054	4.5	LOSA	0.3	2.0	0.13	0.46	0.13	53.0
Vehic	les	434	5	457	1.2	0.211	6.7	LOSA	1.2	8.4	0.06	0.61	0.06	50.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:41 PM

♥ Site: 4 [2041 PM (Site Folder: Option 3Ai)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	CK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)	VO11/11	VOII/II	70	V / O	300		7011	- '''				1311//11
1	L2	1	0	1	0.0	0.021	4.4	LOSA	0.1	0.7	0.28	0.58	0.28	47.9
3a	R1	20	3	21	15.0	0.021	7.0	LOSA	0.1	0.7	0.28	0.58	0.28	38.4
Appro	oach	21	3	22	14.3	0.021	6.9	LOSA	0.1	0.7	0.28	0.58	0.28	39.1
North	East:	Ikkina Rd	l (N)											
24a	L1	34	5	36	14.7	0.100	4.5	LOSA	0.5	3.6	0.02	0.62	0.02	40.9
26a	R1	124	0	131	0.0	0.100	7.2	LOSA	0.5	3.6	0.02	0.62	0.02	50.8
Appro	oach	158	5	166	3.2	0.100	6.6	LOSA	0.5	3.6	0.02	0.62	0.02	49.6
West	: Tabil	ban St (W	/)											
10a	L1	130	0	137	0.0	0.097	4.4	LOSA	0.5	3.6	0.11	0.47	0.11	53.1
12	R2	1	0	1	0.0	0.097	8.1	LOSA	0.5	3.6	0.11	0.47	0.11	49.3
Appro	oach	131	0	138	0.0	0.097	4.4	LOSA	0.5	3.6	0.11	0.47	0.11	53.1
All Vehic	les	310	8	326	2.6	0.100	5.7	LOSA	0.5	3.6	0.07	0.55	0.07	50.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:24:42 PM

Site: 4 [2021 AM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfoi	rmance										
Mov ID	Turn	INP VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Ikkin	a Rd (S)												
1	L2	1	0	1	0.0	0.038	8.3	LOSA	0.2	1.5	0.66	0.73	0.66	44.0
3a	R1	24	2	25	8.3	0.038	11.2	LOS B	0.2	1.5	0.66	0.73	0.66	34.8
Appr	oach	25	2	26	8.0	0.038	11.1	LOS B	0.2	1.5	0.66	0.73	0.66	35.3
North	nEast:	Ikkina Rd	l (N)											
24a	L1	10	1	11	10.0	0.447	4.4	LOSA	3.4	23.6	0.04	0.63	0.04	40.2
26a	R1	706	0	743	0.0	0.447	7.2	LOS A	3.4	23.6	0.04	0.63	0.04	50.2
Appr	oach	716	1	754	0.1	0.447	7.1	LOSA	3.4	23.6	0.04	0.63	0.04	50.2
West	: Tabill	oan St (W	V)											
10a	L1	221	0	233	0.0	0.163	4.4	LOSA	1.0	7.2	0.14	0.46	0.14	52.9
12	R2	3	0	3	0.0	0.163	8.1	LOS A	1.0	7.2	0.14	0.46	0.14	49.1
Appr	oach	224	0	236	0.0	0.163	4.5	LOS A	1.0	7.2	0.14	0.46	0.14	52.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

6.6 LOS A

3.4

23.6

0.08

0.59

0.08

50.5

0.447

Roundabout LOS Method: SIDRA Roundabout LOS.

3

Vehicle movement LOS values are based on average delay per movement.

1016

Intersection and Approach LOS values are based on average delay for all vehicle movements.

0.3

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

965

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:16 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

Rd.sip9

ΑII

Vehicles

Site: 4 [2021 PM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	a Rd (S)												
1 3a Appro	L2 R1 pach	1 24 25	0 0 0	1 25 26	0.0 0.0 0.0	0.028 0.028 0.028	5.8 8.4 8.3	LOS A LOS A	0.1 0.1 0.1	0.9 0.9 0.9	0.48 0.48 0.48	0.64 0.64 0.64	0.48 0.48 0.48	46.7 39.6 40.1
North	East:	Ikkina Rd	I (N)											
24a 26a Appro	L1 R1 pach	17 384 401	0 0 0	18 404 422	0.0 0.0 0.0	0.249 0.249 0.249	4.3 7.2 7.0	LOS A LOS A	1.5 1.5 1.5	10.2 10.2 10.2	0.02 0.02 0.02	0.64 0.64 0.64	0.02 0.02 0.02	40.7 50.4 50.2
West	: Tabill	oan St (W	/)											
10a 12 Appro	L1 R2 pach	476 1 477	0 0 0	501 1 502	0.0 0.0 0.0	0.331 0.331 0.331	4.4 8.1 4.5	LOS A LOS A	2.4 2.4 2.4	16.8 16.8 16.8	0.16 0.16 0.16	0.46 0.46 0.46	0.16 0.16 0.16	52.9 49.1 52.9
All Vehic	les	903	0	951	0.0	0.331	5.7	LOSA	2.4	16.8	0.10	0.55	0.10	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:17 PM

Site: 4 [2024 AM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m -				km/h
South	ı: Ikkir	na Rd (S)												
1	L2	3	0	3	0.0	0.043	9.3	LOSA	0.2	1.7	0.69	0.75	0.69	43.3
3a	R1	23	2	24	8.7	0.043	12.3	LOS B	0.2	1.7	0.69	0.75	0.69	33.8
Appro	oach	26	2	27	7.7	0.043	12.0	LOS B	0.2	1.7	0.69	0.75	0.69	35.4
North	East:	Ikkina Rd	l (N)											
24a	L1	10	1	11	10.0	0.498	4.4	LOSA	4.1	28.5	0.02	0.64	0.02	40.3
26a	R1	793	0	835	0.0	0.498	7.2	LOSA	4.1	28.5	0.02	0.64	0.02	50.3
Appro	oach	803	1	845	0.1	0.498	7.1	LOSA	4.1	28.5	0.02	0.64	0.02	50.2
West	Tabill	ban St (W	/)											
10a	L1	250	0	263	0.0	0.181	4.4	LOSA	1.2	8.2	0.14	0.46	0.14	53.0
12	R2	1	0	1	0.0	0.181	8.1	LOSA	1.2	8.2	0.14	0.46	0.14	49.2
Appro	oach	251	0	264	0.0	0.181	4.4	LOSA	1.2	8.2	0.14	0.46	0.14	53.0
All Vehic	les	1080	3	1137	0.3	0.498	6.6	LOSA	4.1	28.5	0.07	0.60	0.07	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:17 PM

Site: 4 [2024 PM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 11		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.025	5.9	LOS A	0.1	8.0	0.49	0.64	0.49	46.7
3a	R1	21	0	22	0.0	0.025	8.5	LOSA	0.1	0.8	0.49	0.64	0.49	39.5
Appro	oach	22	0	23	0.0	0.025	8.4	LOSA	0.1	8.0	0.49	0.64	0.49	40.0
North	East:	Ikkina Ro	l (N)											
24a	L1	20	0	21	0.0	0.261	4.3	LOSA	1.5	10.8	0.02	0.64	0.02	40.7
26a	R1	401	0	422	0.0	0.261	7.2	LOSA	1.5	10.8	0.02	0.64	0.02	50.4
Appro	oach	421	0	443	0.0	0.261	7.0	LOSA	1.5	10.8	0.02	0.64	0.02	50.2
West	: Tabil	ban St (W	/)											
10a	L1	364	0	383	0.0	0.254	4.4	LOSA	1.7	11.9	0.13	0.46	0.13	53.0
12	R2	1	0	1	0.0	0.254	8.1	LOSA	1.7	11.9	0.13	0.46	0.13	49.2
Appro	oach	365	0	384	0.0	0.254	4.4	LOSA	1.7	11.9	0.13	0.46	0.13	53.0
All Vehic	les	808	0	851	0.0	0.261	5.9	LOSA	1.7	11.9	0.08	0.56	0.08	51.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:18 PM

Site: 4 [2026 AM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	2 22 24	0 2 2	2 23 25	0.0 9.1 8.3	0.026 0.026 0.026	5.2 8.0 7.7	LOS A LOS A	0.1 0.1 0.1	0.9 0.9 0.9	0.43 0.43 0.43	0.62 0.62 0.62	0.43 0.43 0.43	47.3 38.7 39.7
North	East:	Ikkina Rd	(N)											
24a	L1	5	1	5	20.0	0.187	4.5	LOS A	1.0	7.2	0.03	0.63	0.03	40.0
26a	R1	290	0	305	0.0	0.187	7.2	LOSA	1.0	7.2	0.03	0.63	0.03	50.3
Appro	oach	295	1	311	0.3	0.187	7.1	LOSA	1.0	7.2	0.03	0.63	0.03	50.2
West	: Tabil	ban St (W	/)											
10a	L1	107	0	113	0.0	0.083	4.4	LOSA	0.5	3.2	0.12	0.47	0.12	53.0
12	R2	3	0	3	0.0	0.083	8.1	LOSA	0.5	3.2	0.12	0.47	0.12	49.2
Appro	oach	110	0	116	0.0	0.083	4.5	LOSA	0.5	3.2	0.12	0.47	0.12	52.9
All Vehic	les	429	3	452	0.7	0.187	6.5	LOSA	1.0	7.2	0.08	0.59	0.08	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:18 PM

Site: 4 [2026 PM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	a Rd (S)		7011/11	70	V/ 0			7011					1011/11
1	L2	1	0	1	0.0	0.015	4.6	LOSA	0.1	0.5	0.31	0.59	0.31	47.8
3a Appro	R1 pach	15 16	0	16 17	0.0	0.015 0.015	7.2 7.0	LOS A	0.1	0.5 0.5	0.31	0.59	0.31	41.1
North	East:	Ikkina Ro	I (N)											
24a	L1	17	0	18	0.0	0.114	4.3	LOSA	0.6	4.0	0.02	0.64	0.02	40.9
26a	R1	166	0	175	0.0	0.114	7.2	LOSA	0.6	4.0	0.02	0.64	0.02	50.6
Appro	oach	183	0	193	0.0	0.114	6.9	LOS A	0.6	4.0	0.02	0.64	0.02	50.1
West	: Tabill	oan St (W	/)											
10a	L1	111	0	117	0.0	0.082	4.4	LOSA	0.4	3.0	0.09	0.47	0.09	53.2
12	R2	1	0	1	0.0	0.082	8.1	LOSA	0.4	3.0	0.09	0.47	0.09	49.4
Appro	oach	112	0	118	0.0	0.082	4.4	LOSA	0.4	3.0	0.09	0.47	0.09	53.2
All Vehic	les	311	0	327	0.0	0.114	6.0	LOSA	0.6	4.0	0.06	0.57	0.06	51.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:19 PM

Site: 4 [2041 AM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	ı lkkir	veh/h na Rd (S)	veh/h	veh/h	%	v/c	sec		veh	m				km/h
		, ,		4	0.0	0.000	- 1	1.00.4	0.4	4.0	0.45	0.00	0.45	47.0
1	L2	1	0	1	0.0	0.030	5.4	LOSA	0.1	1.0	0.45	0.63	0.45	47.0
3a	R1	26	2	27	7.7	0.030	8.1	LOSA	0.1	1.0	0.45	0.63	0.45	38.5
Appro	oach	27	2	28	7.4	0.030	8.0	LOSA	0.1	1.0	0.45	0.63	0.45	39.0
North	East:	Ikkina Ro	l (N)											
24a	L1	16	1	17	6.3	0.210	4.4	LOSA	1.2	8.2	0.02	0.64	0.02	40.5
26a	R1	321	0	338	0.0	0.210	7.2	LOSA	1.2	8.2	0.02	0.64	0.02	50.4
Appro	oach	337	1	355	0.3	0.210	7.0	LOSA	1.2	8.2	0.02	0.64	0.02	50.2
West	: Tabil	ban St (W	V)											
10a	L1	71	0	75	0.0	0.057	4.4	LOSA	0.3	2.1	0.13	0.46	0.13	53.0
12	R2	1	0	1	0.0	0.057	8.1	LOSA	0.3	2.1	0.13	0.46	0.13	49.2
Appro	oach	72	0	76	0.0	0.057	4.5	LOSA	0.3	2.1	0.13	0.46	0.13	53.0
All Vehic	les	436	3	459	0.7	0.210	6.7	LOSA	1.2	8.2	0.06	0.61	0.06	50.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:20 PM

Site: 4 [2041 PM (Site Folder: Option 3Aii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 32 33	0 0 0	1 34 35	0.0 0.0 0.0	0.030 0.030 0.030	7.1 7.0	LOS A LOS A	0.1 0.1 0.1	1.0 1.0 1.0	0.29 0.29 0.29	0.60 0.60 0.60	0.29 0.29 0.29	47.8 41.1 41.4
North	East:	Ikkina Rd	(N)											
24a 26a	L1 R1	21 141	0 0	22 148	0.0	0.101 0.101	4.3 7.2	LOS A LOS A	0.5 0.5	3.6 3.6	0.02 0.02	0.63 0.63	0.02 0.02	41.0 50.6
Appro	oach	162	0	171	0.0	0.101	6.8	LOSA	0.5	3.6	0.02	0.63	0.02	50.0
West	: Tabil	ban St (W	/)											
10a 12	L1 R2	109 1	0 0	115 1	0.0	0.086 0.086	4.5 8.1	LOS A LOS A	0.4 0.4	3.1 3.1	0.14 0.14	0.47 0.47	0.14 0.14	53.0 49.1
Appro	oach	110	0	116	0.0	0.086	4.5	LOSA	0.4	3.1	0.14	0.47	0.14	52.9
All Vehic	les	305	0	321	0.0	0.101	6.0	LOSA	0.5	3.6	0.09	0.57	0.09	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:29:20 PM

♥ Site: 4 [2021 AM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.038	8.4	LOSA	0.2	1.5	0.65	0.73	0.65	44.0
3a	R1	24	2	25	8.3	0.038	11.3	LOS B	0.2	1.5	0.65	0.73	0.65	34.8
Appro	oach	25	2	26	8.0	0.038	11.1	LOS B	0.2	1.5	0.65	0.73	0.65	35.3
North	East:	Ikkina Rd	(N)											
24a	L1	12	1	13	8.3	0.447	4.4	LOSA	3.4	23.6	0.02	0.64	0.02	40.4
26a	R1	709	0	746	0.0	0.447	7.2	LOSA	3.4	23.6	0.02	0.64	0.02	50.3
Appro	oach	721	1	759	0.1	0.447	7.1	LOSA	3.4	23.6	0.02	0.64	0.02	50.2
West	: Tabil	ban St (W	/)											
10a	L1	211	0	222	0.0	0.155	4.4	LOSA	1.0	6.8	0.14	0.46	0.14	53.0
12	R2	1	0	1	0.0	0.155	8.1	LOSA	1.0	6.8	0.14	0.46	0.14	49.2
Appro	oach	212	0	223	0.0	0.155	4.5	LOSA	1.0	6.8	0.14	0.46	0.14	53.0
All Vehic	les	958	3	1008	0.3	0.447	6.6	LOSA	3.4	23.6	0.07	0.60	0.07	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:37 PM

♥ Site: 4 [2021 PM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
Courth	s. Ilelein	veh/h	veh/h	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
Souti	I. IKKII	na Rd (S)												
1	L2	1	0	1	0.0	0.026	5.8	LOS A	0.1	0.9	0.49	0.64	0.49	46.7
3a	R1	22	0	23	0.0	0.026	8.5	LOSA	0.1	0.9	0.49	0.64	0.49	39.6
Appro	oach	23	0	24	0.0	0.026	8.3	LOSA	0.1	0.9	0.49	0.64	0.49	40.0
North	East:	Ikkina Ro	l (N)											
24a	L1	17	0	18	0.0	0.254	4.3	LOSA	1.5	10.5	0.02	0.64	0.02	40.7
26a	R1	393	0	414	0.0	0.254	7.2	LOSA	1.5	10.5	0.02	0.64	0.02	50.4
Appro	oach	410	0	432	0.0	0.254	7.0	LOSA	1.5	10.5	0.02	0.64	0.02	50.2
West	: Tabill	ban St (W	V)											
10a	L1	475	0	500	0.0	0.328	4.4	LOSA	2.4	16.7	0.15	0.46	0.15	53.0
12	R2	1	0	1	0.0	0.328	8.1	LOSA	2.4	16.7	0.15	0.46	0.15	49.1
Appro	oach	476	0	501	0.0	0.328	4.4	LOSA	2.4	16.7	0.15	0.46	0.15	53.0
All Vehic	les	909	0	957	0.0	0.328	5.7	LOSA	2.4	16.7	0.10	0.55	0.10	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:38 PM

♥ Site: 4 [2024 AM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1	L2	3	0	3	0.0	0.044	9.0	LOSA	0.2	1.7	0.68	0.74	0.68	43.8
3a	R1	26	0	27	0.0	0.044	11.7	LOS B	0.2	1.7	0.68	0.74	0.68	35.7
Appro	oach	29	0	31	0.0	0.044	11.4	LOS B	0.2	1.7	0.68	0.74	0.68	36.9
North	East:	Ikkina Rd	I (N)											
24a	L1	10	4	11	40.0	0.483	4.7	LOSA	3.8	27.1	0.02	0.64	0.02	39.6
26a	R1	767	0	807	0.0	0.483	7.2	LOSA	3.8	27.1	0.02	0.64	0.02	50.3
Appro	oach	777	4	818	0.5	0.483	7.1	LOSA	3.8	27.1	0.02	0.64	0.02	50.2
West	: Tabill	ban St (W	/)											
10a	L1	207	0	218	0.0	0.153	4.4	LOSA	1.0	6.7	0.15	0.46	0.15	53.0
12	R2	1	0	1	0.0	0.153	8.1	LOSA	1.0	6.7	0.15	0.46	0.15	49.1
Appro	oach	208	0	219	0.0	0.153	4.5	LOSA	1.0	6.7	0.15	0.46	0.15	52.9
All Vehic	eles	1014	4	1067	0.4	0.483	6.7	LOSA	3.8	27.1	0.07	0.61	0.07	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:38 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2024 PM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.025	5.9	LOSA	0.1	8.0	0.50	0.64	0.50	46.6
3a	R1	21	0	22	0.0	0.025	8.5	LOSA	0.1	8.0	0.50	0.64	0.50	39.5
Appro	oach	22	0	23	0.0	0.025	8.4	LOSA	0.1	8.0	0.50	0.64	0.50	40.0
North	East:	Ikkina Ro	I (N)											
24a	L1	21	2	22	9.5	0.278	4.5	LOSA	1.7	11.8	0.07	0.62	0.07	40.2
26a	R1	402	2	423	0.5	0.278	7.2	LOSA	1.7	11.8	0.07	0.62	0.07	50.2
Appro	oach	423	4	445	0.9	0.278	7.1	LOSA	1.7	11.8	0.07	0.62	0.07	49.9
West	: Tabill	oan St (W	/)											
10a	L1	373	0	393	0.0	0.266	4.4	LOSA	1.8	12.5	0.13	0.47	0.13	53.0
12	R2	9	0	9	0.0	0.266	8.1	LOSA	1.8	12.5	0.13	0.47	0.13	49.1
Appro	oach	382	0	402	0.0	0.266	4.5	LOSA	1.8	12.5	0.13	0.47	0.13	52.9
All Vehic	les	827	4	871	0.5	0.278	5.9	LOSA	1.8	12.5	0.11	0.55	0.11	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:39 PM

♥ Site: 4 [2026 AM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM. FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUE [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Ikkir	na Rd (S)												
1	L2	2	0	2	0.0	0.025	5.3	LOSA	0.1	8.0	0.43	0.62	0.43	47.3
3a	R1	21	1	22	4.8	0.025	8.0	LOSA	0.1	8.0	0.43	0.62	0.43	39.4
Appro	oach	23	1	24	4.3	0.025	7.8	LOSA	0.1	8.0	0.43	0.62	0.43	40.5
North	East:	Ikkina Ro	l (N)											
24a	L1	5	0	5	0.0	0.192	4.3	LOSA	1.0	7.3	0.02	0.64	0.02	40.6
26a	R1	304	0	320	0.0	0.192	7.2	LOSA	1.0	7.3	0.02	0.64	0.02	50.3
Appro	oach	309	0	325	0.0	0.192	7.1	LOSA	1.0	7.3	0.02	0.64	0.02	50.3
West	: Tabill	ban St (W	/)											
10a	L1	105	0	111	0.0	0.080	4.4	LOSA	0.4	3.0	0.12	0.47	0.12	53.1
12	R2	1	0	1	0.0	0.080	8.1	LOSA	0.4	3.0	0.12	0.47	0.12	49.3
Appro	oach	106	0	112	0.0	0.080	4.4	LOSA	0.4	3.0	0.12	0.47	0.12	53.1
All Vehic	les	438	1	461	0.2	0.192	6.5	LOSA	1.0	7.3	0.06	0.60	0.06	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:40 PM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2026 PM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 15 16	0 0 0	1 16 17	0.0 0.0 0.0	0.015 0.015 0.015	4.6 7.2 7.0	LOS A LOS A	0.1 0.1 0.1	0.5 0.5 0.5	0.32 0.32 0.32	0.59 0.59 0.59	0.32 0.32 0.32	47.8 41.1 41.8
North	East:	Ikkina Rd	(N)											
24a	L1	17	1	18	5.9	0.117	4.4	LOSA	0.6	4.2	0.02	0.64	0.02	40.7
26a Appro	R1 pach	169 186	3	178 196	1.2	0.117 0.117	7.2 6.9	LOSA	0.6	4.2	0.02	0.64	0.02	50.5
West	: Tabil	ban St (W	/)											
10a 12	L1 R2	106 1	0 0	112 1	0.0 0.0	0.078 0.078	4.4 8.1	LOS A LOS A	0.4 0.4	2.9 2.9	0.09 0.09	0.47 0.47	0.09 0.09	53.2 49.4
Appro	oach	107	0	113	0.0	0.078	4.4	LOSA	0.4	2.9	0.09	0.47	0.09	53.2
All Vehic	les	309	3	325	1.0	0.117	6.1	LOSA	0.6	4.2	0.06	0.58	0.06	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:40 PM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2041 AM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUE [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Ikkir	na Rd (S)												
1	L2	3	0	3	0.0	0.031	5.4	LOSA	0.1	1.0	0.44	0.63	0.44	47.3
3a	R1	26	0	27	0.0	0.031	8.0	LOSA	0.1	1.0	0.44	0.63	0.44	40.3
Appro	oach	29	0	31	0.0	0.031	7.8	LOSA	0.1	1.0	0.44	0.63	0.44	41.4
North	East:	Ikkina Rd	l (N)											
24a	L1	16	5	17	31.3	0.217	4.6	LOSA	1.2	8.7	0.04	0.63	0.04	39.8
26a	R1	322	0	339	0.0	0.217	7.2	LOSA	1.2	8.7	0.04	0.63	0.04	50.3
Appro	oach	338	5	356	1.5	0.217	7.1	LOSA	1.2	8.7	0.04	0.63	0.04	50.0
West	: Tabil	ban St (W	/)											
10a	L1	68	0	72	0.0	0.056	4.4	LOSA	0.3	2.1	0.13	0.47	0.13	52.9
12	R2	4	0	4	0.0	0.056	8.1	LOSA	0.3	2.1	0.13	0.47	0.13	49.0
Appro	oach	72	0	76	0.0	0.056	4.6	LOSA	0.3	2.1	0.13	0.47	0.13	52.7
All Vehic	les	439	5	462	1.1	0.217	6.7	LOSA	1.2	8.7	0.08	0.60	0.08	50.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:41 PM

♥ Site: 4 [2041 PM (Site Folder: Option 3Aiii)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 34 35	0 2 2	1 36 37	0.0 5.9 5.7	0.033 0.033 0.033	4.4 7.1 7.0	LOS A LOS A	0.2 0.2 0.2	1.1 1.1 1.1	0.30 0.30 0.30	0.60 0.60 0.60	0.30 0.30 0.30	47.8 39.9 40.3
North	East:	Ikkina Rd	(N)											
24a	L1	21	0	22	0.0	0.101	4.3	LOSA	0.5	3.6	0.02	0.63	0.02	41.0
26a	R1	140	0	147	0.0	0.101	7.2	LOSA	0.5	3.6	0.02	0.63	0.02	50.7
Appro	oach	161	0	169	0.0	0.101	6.8	LOSA	0.5	3.6	0.02	0.63	0.02	50.0
West	: Tabil	ban St (W	/)											
10a	L1	110	0	116	0.0	0.087	4.5	LOSA	0.5	3.2	0.15	0.47	0.15	52.9
12	R2	1	0	1	0.0	0.087	8.2	LOSA	0.5	3.2	0.15	0.47	0.15	49.1
Appro	oach	111	0	117	0.0	0.087	4.5	LOSA	0.5	3.2	0.15	0.47	0.15	52.9
All Vehic	les	307	2	323	0.7	0.101	6.0	LOSA	0.5	3.6	0.10	0.57	0.10	50.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:34:42 PM

♥ Site: 4 [2021 AM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 23 24	0 2 2	1 24 25	0.0 8.7 8.3	0.036 0.036 0.036	8.0 10.9 10.8	LOS A LOS B	0.2 0.2 0.2	1.4 1.4 1.4	0.64 0.64 0.64	0.72 0.72 0.72	0.64 0.64 0.64	44.4 35.1 35.7
North	East:	Ikkina Rd	(N)											
24a 26a	L1 R1	11 672	1 0	12 707	9.1 0.0	0.425 0.425	4.4 7.2	LOS A LOS A	3.1 3.1	21.7 21.7	0.03 0.03	0.63 0.63	0.03 0.03	40.3 50.3
Appro		683	1	719	0.0	0.425	7.1	LOSA	3.1	21.7	0.03	0.63	0.03	50.2
West	: Tabil	ban St (W	/)											
10a 12	L1 R2	206 2	0 0	217 2	0.0	0.152 0.152	4.4 8.1	LOS A LOS A	0.9 0.9	6.6 6.6	0.14 0.14	0.46 0.46	0.14 0.14	53.0 49.2
Appro	oach	208	0	219	0.0	0.152	4.5	LOSA	0.9	6.6	0.14	0.46	0.14	53.0
All Vehic	les	915	3	963	0.3	0.425	6.6	LOSA	3.1	21.7	0.07	0.60	0.07	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:00 PM

♥ Site: 4 [2021 PM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 21 22	0 0 0	1 22 23	0.0 0.0 0.0	0.024 0.024 0.024	5.6 8.2 8.1	LOS A LOS A	0.1 0.1 0.1	0.8 0.8 0.8	0.46 0.46 0.46	0.63 0.63 0.63	0.46 0.46 0.46	46.9 39.9 40.4
North	East:	Ikkina Rd	(N)											
24a	L1	25	0	26	0.0	0.238	4.3	LOSA	1.4	9.7	0.02	0.64	0.02	40.8
26a Appro	R1 pach	359 384	0	378 404	0.0	0.238 0.238	7.2	LOSA	1.4	9.7 9.7	0.02	0.64	0.02	50.5 50.1
West	: Tabil	ban St (W	/)											
10a 12	L1 R2	469 1	0 0	494 1	0.0 0.0	0.323 0.323	4.4 8.1	LOS A LOS A	2.3 2.3	16.2 16.2	0.14 0.14	0.46 0.46	0.14 0.14	53.0 49.2
Appro	oach	470	0	495	0.0	0.323	4.4	LOSA	2.3	16.2	0.14	0.46	0.14	53.0
All Vehic	les	876	0	922	0.0	0.323	5.6	LOSA	2.3	16.2	0.10	0.54	0.10	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:00 PM

♥ Site: 4 [2024 AM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Ikkin	na Rd (S)												
1	L2	2	0	2	0.0	0.037	8.7	LOSA	0.2	1.4	0.67	0.72	0.67	44.0
3a	R1	23	0	24	0.0	0.037	11.3	LOS B	0.2	1.4	0.67	0.72	0.67	36.0
Appro	oach	25	0	26	0.0	0.037	11.1	LOS B	0.2	1.4	0.67	0.72	0.67	37.0
North	East:	Ikkina Rd	d (N)											
24a	L1	14	4	15	28.6	0.468	4.6	LOSA	3.6	25.6	0.02	0.64	0.02	39.9
26a	R1	740	0	779	0.0	0.468	7.2	LOSA	3.6	25.6	0.02	0.64	0.02	50.3
Appro	oach	754	4	794	0.5	0.468	7.1	LOSA	3.6	25.6	0.02	0.64	0.02	50.2
West	Tabill	oan St (W	V)											
10a	L1	222	0	234	0.0	0.162	4.4	LOSA	1.0	7.1	0.14	0.46	0.14	53.0
12	R2	1	0	1	0.0	0.162	8.1	LOSA	1.0	7.1	0.14	0.46	0.14	49.2
Appro	oach	223	0	235	0.0	0.162	4.4	LOSA	1.0	7.1	0.14	0.46	0.14	53.0
All Vehic	les	1002	4	1055	0.4	0.468	6.6	LOSA	3.6	25.6	0.06	0.60	0.06	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:01 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2024 PM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None)

rn

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	[Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.025	5.9	LOSA	0.1	8.0	0.49	0.64	0.49	46.7
3a	R1	21	0	22	0.0	0.025	8.5	LOSA	0.1	8.0	0.49	0.64	0.49	39.5
Appro	ach	22	0	23	0.0	0.025	8.4	LOSA	0.1	8.0	0.49	0.64	0.49	40.0
North	East:	Ikkina Rd	(N)											
24a	L1	36	2	38	5.6	0.278	4.4	LOSA	1.7	11.8	0.05	0.62	0.05	40.5
26a	R1	398	2	419	0.5	0.278	7.2	LOSA	1.7	11.8	0.05	0.62	0.05	50.4
Appro	ach	434	4	457	0.9	0.278	7.0	LOSA	1.7	11.8	0.05	0.62	0.05	49.9
West	Tabill	ban St (W	/)											
10a	L1	355	0	374	0.0	0.251	4.4	LOSA	1.7	11.7	0.13	0.46	0.13	53.0
12	R2	5	0	5	0.0	0.251	8.1	LOSA	1.7	11.7	0.13	0.46	0.13	49.2
Appro	ach	360	0	379	0.0	0.251	4.5	LOSA	1.7	11.7	0.13	0.46	0.13	52.9
All Vehic	les	816	4	859	0.5	0.278	5.9	LOSA	1.7	11.8	0.10	0.55	0.10	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:02 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina

♥ Site: 4 [2026 AM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	[Veh.	CK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Ikkir	na Rd (S)												
1	L2	2	0	2	0.0	0.025	5.2	LOSA	0.1	0.9	0.42	0.62	0.42	47.4
3a	R1	22	1	23	4.5	0.025	7.9	LOSA	0.1	0.9	0.42	0.62	0.42	39.6
Appro	oach	24	1	25	4.2	0.025	7.6	LOSA	0.1	0.9	0.42	0.62	0.42	40.6
North	East:	Ikkina Ro	l (N)											
24a	L1	5	0	5	0.0	0.179	4.3	LOSA	1.0	6.8	0.02	0.64	0.02	40.6
26a	R1	283	0	298	0.0	0.179	7.2	LOSA	1.0	6.8	0.02	0.64	0.02	50.4
Appro	oach	288	0	303	0.0	0.179	7.1	LOSA	1.0	6.8	0.02	0.64	0.02	50.3
West	: Tabil	ban St (W	/)											
10a	L1	106	0	112	0.0	0.081	4.4	LOSA	0.4	3.1	0.12	0.47	0.12	53.1
12	R2	1	0	1	0.0	0.081	8.1	LOSA	0.4	3.1	0.12	0.47	0.12	49.3
Appro	oach	107	0	113	0.0	0.081	4.5	LOSA	0.4	3.1	0.12	0.47	0.12	53.0
All Vehic	les	419	1	441	0.2	0.179	6.5	LOSA	1.0	6.8	0.07	0.60	0.07	50.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:02 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

♥ Site: 4 [2026 PM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Ikkir	na Rd (S)												
1	L2	1	0	1	0.0	0.017	4.5	LOSA	0.1	0.5	0.30	0.59	0.30	47.9
3a	R1	17	0	18	0.0	0.017	7.1	LOSA	0.1	0.5	0.30	0.59	0.30	41.1
Appro	oach	18	0	19	0.0	0.017	7.0	LOSA	0.1	0.5	0.30	0.59	0.30	41.7
North	East:	Ikkina Rd	l (N)											
24a	L1	18	1	19	5.6	0.108	4.4	LOSA	0.5	3.8	0.02	0.63	0.02	40.8
26a	R1	154	2	162	1.3	0.108	7.2	LOSA	0.5	3.8	0.02	0.63	0.02	50.5
Appro	oach	172	3	181	1.7	0.108	6.9	LOSA	0.5	3.8	0.02	0.63	0.02	49.9
West	Tabill	ban St (W	/)											
10a	L1	111	0	117	0.0	0.083	4.4	LOSA	0.4	3.0	0.10	0.47	0.10	53.2
12	R2	1	0	1	0.0	0.083	8.1	LOSA	0.4	3.0	0.10	0.47	0.10	49.4
Appro	oach	112	0	118	0.0	0.083	4.4	LOSA	0.4	3.0	0.10	0.47	0.10	53.2
All Vehic	les	302	3	318	1.0	0.108	6.0	LOSA	0.5	3.8	0.06	0.57	0.06	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:03 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

♥ Site: 4 [2041 AM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	ı: Ikkin	a Rd (S)												
1 3a Appro	L2 R1 pach	1 26 27	0 0 0	1 27 28	0.0 0.0 0.0	0.029 0.029 0.029	5.4 8.0 7.9	LOS A LOS A	0.1 0.1 0.1	0.9 0.9 0.9	0.44 0.44 0.44	0.63 0.63 0.63	0.44 0.44 0.44	47.1 40.2 40.6
North	East:	Ikkina Rd	I (N)											
24a 26a Appro	L1 R1 pach	16 317 333	5 0 5	17 334 351	31.3 0.0 1.5	0.208 0.208 0.208	4.6 7.2 7.0	LOS A LOS A	1.2 1.2 1.2	8.2 8.2 8.2	0.02 0.02 0.02	0.64 0.64 0.64	0.02 0.02 0.02	39.9 50.4 50.1
West	: Tabill	oan St (W	/)											
10a 12 Appro	L1 R2 pach	71 1 72 432	0 0 0	75 1 76 455	0.0 0.0 0.0	0.056 0.056 0.056	4.4 8.1 4.5	LOS A LOS A LOS A	0.3 0.3 0.3	2.1 2.1 2.1 8.2	0.13 0.13 0.13	0.46 0.46 0.46	0.13 0.13 0.13	53.0 49.2 53.0
Vehic	les		Ĭ			0.203	· · ·			J. <u>_</u>	0.00	0.01	0.00	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:04 PM

Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

♥ Site: 4 [2041 PM (Site Folder: Option 3Aiv)]

Tabilban Street / Ikkina Road Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	ı: Ikkir	na Rd (S)												
1 3a Appro	L2 R1 pach	1 33 34	0 2 2	1 35 36	0.0 6.1 5.9	0.032 0.032 0.032	4.4 7.1 7.0	LOS A LOS A	0.1 0.1 0.1	1.1 1.1 1.1	0.29 0.29 0.29	0.60 0.60 0.60	0.29 0.29 0.29	47.8 39.9 40.3
North	East:	Ikkina Rd	(N)											
24a	L1	21	0	22	0.0	0.097	4.3	LOSA	0.5	3.4	0.02	0.63	0.02	41.1
26a	R1	134	0	141	0.0	0.097	7.2	LOSA	0.5	3.4	0.02	0.63	0.02	50.7
Appro	oach	155	0	163	0.0	0.097	6.8	LOSA	0.5	3.4	0.02	0.63	0.02	49.9
West	Tabil	ban St (W	/)											
10a	L1	114	0	120	0.0	0.090	4.5	LOSA	0.5	3.3	0.15	0.47	0.15	52.9
12	R2	1	0	1	0.0	0.090	8.2	LOSA	0.5	3.3	0.15	0.47	0.15	49.1
Appro	oach	115	0	121	0.0	0.090	4.5	LOSA	0.5	3.3	0.15	0.47	0.15	52.9
All Vehic	les	304	2	320	0.7	0.097	5.9	LOSA	0.5	3.4	0.10	0.56	0.10	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

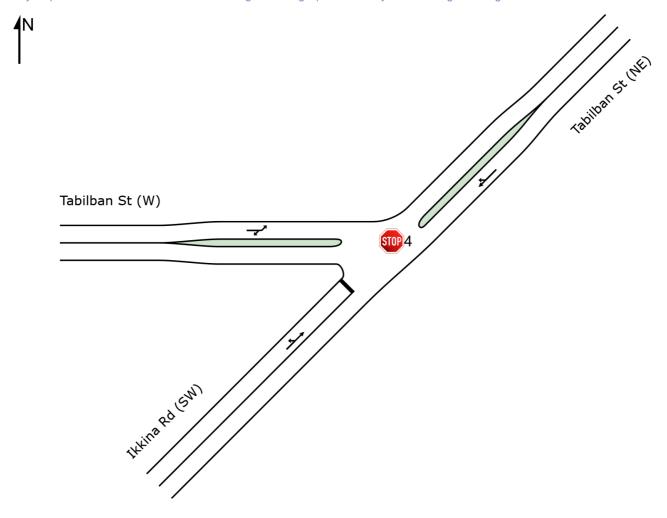
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Thursday, 11 August 2022 1:39:05 PM Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina


Rd.sip9

SITE LAYOUT

Site: 4 [2021 AM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Created: Monday, 15 August 2022 12:02:11 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd sin9

Site: 4 [2021 AM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8 26a Appro	T1 R1 pach	10 710 720	1 0 1	11 747 758	10.0 0.0 0.1	0.393 0.393 0.393	0.1 2.6 2.5	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.39 0.39 0.39	0.00 0.00 0.00	36.6 38.5 38.5
West	: Tabill	ban St (W	/)											
10a	L1	219	0	231	0.0	0.121	3.5	LOSA	0.0	0.1	0.01	0.48	0.01	37.7
12b	R3	1	0	1	0.0	0.121	8.4	LOSA	0.0	0.1	0.01	0.48	0.01	28.9
Appro	oach	220	0	232	0.0	0.121	3.5	NA	0.0	0.1	0.01	0.48	0.01	37.7
South	nWest:	: Ikkina R	d (SW)											
30b	L3	1	0	1	0.0	0.089	13.1	LOS B	0.3	2.2	0.75	1.03	0.75	31.9
2	T1	25	2	26	8.0	0.089	18.1	LOS C	0.3	2.2	0.75	1.03	0.75	26.0
Appro	oach	26	2	27	7.7	0.089	17.9	LOS C	0.3	2.2	0.75	1.03	0.75	26.3
All Vehic	les	966	3	1017	0.3	0.393	3.1	NA	0.3	2.2	0.02	0.43	0.02	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:09 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2021 PM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban :	St (NE)											
8 26a Appro	T1 R1 pach	23 359 382	0 0 0	24 378 402	0.0 0.0 0.0	0.208 0.208 0.208	0.0 2.5 2.4	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.37 0.37 0.37	0.00 0.00 0.00	36.8 38.7 38.6
West	: Tabill	ban St (W	/)											
10a	L1	469	0	494	0.0	0.257	3.4	LOSA	0.0	0.2	0.01	0.48	0.01	37.8
12b	R3	2	0	2	0.0	0.257	6.1	LOSA	0.0	0.2	0.01	0.48	0.01	28.9
Appro	oach	471	0	496	0.0	0.257	3.4	NA	0.0	0.2	0.01	0.48	0.01	37.7
South	nWest:	: Ikkina R	d (SW)											
30b	L3	3	0	3	0.0	0.058	9.9	LOSA	0.2	1.3	0.63	1.01	0.63	33.7
2	T1	21	0	22	0.0	0.058	14.3	LOS B	0.2	1.3	0.63	1.01	0.63	28.5
Appro	oach	24	0	25	0.0	0.058	13.8	LOS B	0.2	1.3	0.63	1.01	0.63	29.4
All Vehic	les	877	0	923	0.0	0.257	3.3	NA	0.2	1.3	0.02	0.45	0.02	38.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:10 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2024 AM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban :	St (NE)											
8 26a Appro	T1 R1 pach	13 809 822	4 0 4	14 852 865	30.8 0.0 0.5	0.449 0.449 0.449	0.1 2.6 2.5	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.39 0.39 0.39	0.00 0.00 0.00	36.5 38.5 38.5
West	: Tabill	ban St (W	/)											
10a	L1	202	0	213	0.0	0.113	3.5	LOSA	0.0	0.3	0.02	0.47	0.02	37.7
12b	R3	2	0	2	0.0	0.113	9.7	LOSA	0.0	0.3	0.02	0.47	0.02	28.9
Appro	oach	204	0	215	0.0	0.113	3.6	NA	0.0	0.3	0.02	0.47	0.02	37.6
South	nWest	: Ikkina R	d (SW)											
30b	L3	1	0	1	0.0	0.102	14.5	LOS B	0.3	2.3	0.79	1.02	0.79	31.3
2	T1	26	0	27	0.0	0.102	19.1	LOS C	0.3	2.3	0.79	1.02	0.79	25.2
Appro	oach	27	0	28	0.0	0.102	19.0	LOS C	0.3	2.3	0.79	1.02	0.79	25.6
All Vehic	eles	1053	4	1108	0.4	0.449	3.2	NA	0.3	2.3	0.02	0.42	0.02	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:11 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2024 PM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8 26a Appro	T1 R1 pach	30 387 417	2 2 4	32 407 439	6.7 0.5 1.0	0.228 0.228 0.228	0.0 2.5 2.3	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.37 0.37 0.37	0.00 0.00 0.00	36.8 38.7 38.6
West	: Tabill	ban St (W	/)											
10a	L1	383	0	403	0.0	0.214	3.5	LOSA	0.1	0.4	0.02	0.47	0.02	37.7
12b	R3	5	0	5	0.0	0.214	6.2	LOSA	0.1	0.4	0.02	0.47	0.02	28.9
Appro	oach	388	0	408	0.0	0.214	3.5	NA	0.1	0.4	0.02	0.47	0.02	37.6
South	nWest	: Ikkina R	d (SW)											
30b	L3	1	0	1	0.0	0.048	10.1	LOS B	0.2	1.1	0.62	1.01	0.62	34.0
2	T1	20	0	21	0.0	0.048	13.3	LOS B	0.2	1.1	0.62	1.01	0.62	28.9
Appro	oach	21	0	22	0.0	0.048	13.2	LOS B	0.2	1.1	0.62	1.01	0.62	29.3
All Vehic	les	826	4	869	0.5	0.228	3.2	NA	0.2	1.1	0.02	0.43	0.02	38.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:11 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2026 AM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8 26a Appro	T1 R1 pach	8 287 295	0 0 0	8 302 311	0.0 0.0 0.0	0.161 0.161 0.161	0.0 2.5 2.4	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.38 0.38 0.38	0.00 0.00 0.00	36.7 38.6 38.6
West	: Tabil	ban St (W	/)											
10a 12b	L1 R3	106 1	0 0	112 1	0.0	0.059 0.059	3.4 5.2	LOS A LOS A	0.0	0.1 0.1	0.01 0.01	0.48 0.48	0.01 0.01	37.8 28.9
Appro		107 : Ikkina R	0 d (SW)	113	0.0	0.059	3.4	NA	0.0	0.1	0.01	0.48	0.01	37.7
30b 2	L3 T1	1 22	0	1 23	0.0 4.5	0.032 0.032	9.5 9.6	LOS A LOS A	0.1 0.1	0.8	0.44 0.44	0.94 0.94	0.44 0.44	35.9 31.6
Appro	oach	23	1	24	4.3	0.032	9.6	LOSA	0.1	8.0	0.44	0.94	0.44	31.9
All Vehic	les	425	1	447	0.2	0.161	3.1	NA	0.1	0.8	0.03	0.44	0.03	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:12 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2026 PM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8 26a Appro	T1 R1 pach	22 161 183	1 2 3	23 169 193	4.5 1.2 1.6	0.101 0.101 0.101	0.0 2.5 2.2	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.35 0.35 0.35	0.00 0.00 0.00	37.0 38.8 38.7
West	: Tabill	ban St (W	/)											
10a	L1	104	0	109	0.0	0.057	3.4	LOSA	0.0	0.1	0.01	0.48	0.01	37.8
12b	R3	1	0	1	0.0	0.057	4.8	LOSA	0.0	0.1	0.01	0.48	0.01	28.9
Appro	oach	105	0	111	0.0	0.057	3.4	NA	0.0	0.1	0.01	0.48	0.01	37.7
South	nWest	: Ikkina R	d (SW)											
30b	L3	1	0	1	0.0	0.021	8.9	LOSA	0.1	0.5	0.35	0.92	0.35	36.4
2	T1	17	0	18	0.0	0.021	8.5	LOSA	0.1	0.5	0.35	0.92	0.35	32.3
Appro	oach	18	0	19	0.0	0.021	8.6	LOSA	0.1	0.5	0.35	0.92	0.35	32.7
All Vehic	les	306	3	322	1.0	0.101	3.0	NA	0.1	0.5	0.02	0.43	0.02	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:12 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2041 AM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8	T1	16	5	17	31.3	0.185	0.0	LOSA	0.0	0.0	0.00	0.38	0.00	36.7
26a Appro	R1 pach	320 336	0 5	337 354	0.0 1.5	0.185 0.185	2.5	LOS A NA	0.0	0.0	0.00	0.38	0.00	38.6 38.6
West	: Tabill	ban St (W	V)											
10a	L1	71	0	75	0.0	0.043	3.5	LOSA	0.0	0.3	0.07	0.46	0.07	37.6
12b	R3	5	0	5	0.0	0.043	5.4	LOSA	0.0	0.3	0.07	0.46	0.07	28.8
Appro	oach	76	0	80	0.0	0.043	3.7	NA	0.0	0.3	0.07	0.46	0.07	37.0
South	nWest:	: Ikkina R	d (SW)											
30b	L3	2	0	2	0.0	0.038	9.7	LOSA	0.1	1.0	0.44	0.94	0.44	35.9
2	T1	26	0	27	0.0	0.038	9.5	LOSA	0.1	1.0	0.44	0.94	0.44	31.6
Appro	oach	28	0	29	0.0	0.038	9.5	LOSA	0.1	1.0	0.44	0.94	0.44	32.1
All Vehic	les	440	5	463	1.1	0.185	3.1	NA	0.1	1.0	0.04	0.43	0.04	38.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:13 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

Site: 4 [2041 PM (Site Folder: Option 3Av)]

Tabilban Street / Ikkina Road Site Category: (None) Stop (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
North	East:	Tabilban	St (NE)											
8 26a Appro	T1 R1 pach	21 147 168	0 0 0	22 155 177	0.0 0.0 0.0	0.091 0.091 0.091	0.0 2.5 2.2	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.35 0.35 0.35	0.00 0.00 0.00	37.0 38.8 38.7
West	: Tabill	oan St (W	V)											
10a 12b Appro	L1 R3 pach	112 3 115	0 0 0	118 3 121	0.0 0.0 0.0	0.063 0.063 0.063	3.4 4.7 3.5	LOS A LOS A NA	0.0 0.0 0.0	0.2 0.2 0.2	0.02 0.02 0.02	0.48 0.48 0.48	0.02 0.02 0.02	37.7 28.9 37.5
South	nWest:	Ikkina R	d (SW)											
30b 2 Appro All Vehice		1 34 35 318	0 2 2	1 36 37 335	0.0 5.9 5.7 0.6	0.042 0.042 0.042 0.091	8.8 8.8 8.8 3.4	LOS A LOS A NA	0.2 0.2 0.2	1.1 1.1 1.1	0.36 0.36 0.36 0.05	0.95 0.95 0.95 0.46	0.36 0.36 0.36 0.05	36.3 32.2 32.4 37.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

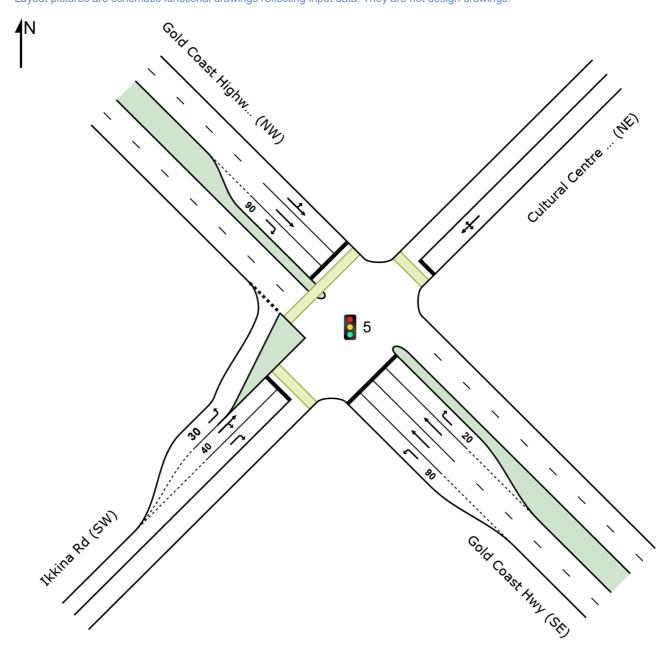
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / Enterprise | Processed: Monday, 15 August 2022 12:01:13 PM
Project: P:\P5288 Koala Park Traffic Management Study\Technical Work\Models\SIDRA\Options Testing\4 - P5288.001M Tabilban St - Ikkina Rd.sip9

SITE LAYOUT


Site: 5 [2021 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2021 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	hEast:	Gold Coa	ast Hwy	(SE)										
4	L2	515	0	542	0.0	* 0.372	8.2	LOSA	7.3	51.0	0.33	0.68	0.33	48.2
5	T1	1525	49	1605	3.2	* 0.571	1.1	LOSA	3.5	24.9	0.07	0.07	0.07	58.9
6	R2	1	0	1	0.0	0.003	10.2	LOS B	0.0	0.1	0.33	0.59	0.33	45.4
Appro	oach	2041	49	2148	2.4	0.571	2.9	LOSA	7.3	51.0	0.13	0.22	0.13	55.8
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.381	88.6	LOS F	8.0	5.7	1.00	0.66	1.00	18.2
8	T1	1	0	1	0.0	* 0.381	84.1	LOS F	8.0	5.7	1.00	0.66	1.00	17.7
9	R2	8	0	8	0.0	0.381	88.6	LOS F	8.0	5.7	1.00	0.66	1.00	18.3
Appro	oach	10	0	11	0.0	0.381	88.2	LOS F	0.8	5.7	1.00	0.66	1.00	18.2
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	0.335	11.7	LOS B	10.7	77.6	0.36	0.33	0.36	49.3
11	T1	910	43	958	4.7	0.335	6.1	LOSA	10.7	77.6	0.36	0.32	0.36	54.5
12	R2	25	1	26	4.0	* 0.510	85.2	LOS F	2.0	14.1	1.00	0.72	1.04	24.1
Appro	oach	938	44	987	4.7	0.510	8.2	LOSA	10.7	77.6	0.38	0.34	0.38	52.7
South	hWest	: Ikkina R	d (SW)											
1	L2	48	2	51	4.2	0.064	5.1	LOSA	0.3	1.9	0.13	0.53	0.13	49.9
2	T1	1	0	1	0.0	0.501	66.3	LOS E	6.2	43.6	0.99	0.78	0.99	20.3
3	R2	176	0	185	0.0	0.501	70.8	LOS E	6.2	43.6	0.99	0.78	0.99	26.4
Appro	oach	225	2	237	0.9	0.501	56.8	LOS E	6.2	43.6	0.81	0.73	0.81	29.3
All Vehic	cles	3214	95	3383	3.0	0.571	8.5	LOSA	10.7	77.6	0.26	0.29	0.26	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2021 PM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
_	Turn	INP		DEMA		Deg.		Level of	95% B <i>A</i>		Prop.	Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	300		VCII	- '''				KIII/II
4	L2	386	0	406	0.0	0.408	25.9	LOS C	16.2	113.2	0.64	0.77	0.64	39.1
5	T1	872	27	918	3.1	0.411	17.2	LOS B	17.0	122.0	0.60	0.53	0.60	46.8
6	R2	1	0	1	0.0	* 0.007	15.1	LOS B	0.0	0.2	0.45	0.59	0.45	41.5
Appr	oach	1259	27	1325	2.1	0.411	19.8	LOS B	17.0	122.0	0.61	0.60	0.61	44.1
North	nEast:	Cultural (Centre A	ccess (NE	.)									
7	L2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
8	T1	1	0	1	0.0	* 0.379	90.1	LOS F	0.4	3.0	1.00	0.63	1.03	17.0
9	R2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
Appr	oach	5	0	5	0.0	0.379	93.7	LOS F	0.4	3.0	1.00	0.63	1.03	17.4
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	* 0.593	12.0	LOS B	13.9	98.3	0.30	0.28	0.30	49.0
11	T1	1426	22	1501	1.5	0.593	6.5	LOS A	13.9	98.3	0.30	0.28	0.30	54.3
12	R2	33	0	35	0.0	0.238	73.0	LOS E	2.3	16.1	0.97	0.73	0.97	26.2
Appr	oach	1462	22	1539	1.5	0.593	8.0	LOSA	13.9	98.3	0.31	0.29	0.31	53.0
Sout	hWest:	Ikkina R	d (SW)											
1	L2	34	0	36	0.0	0.051	35.0	LOS C	1.6	11.4	0.68	0.64	0.68	35.6
2	T1	3	0	3	0.0	* 0.604	53.2	LOS D	13.8	96.7	0.95	0.82	0.95	22.8
3	R2	400	0	421	0.0	0.604	57.3	LOS E	13.8	96.7	0.94	0.81	0.94	29.2
Appr	oach	437	0	460	0.0	0.604	55.6	LOS E	13.8	96.7	0.92	0.80	0.92	29.6
All Vehic	cles	3163	49	3329	1.5	0.604	19.4	LOS B	17.0	122.0	0.52	0.48	0.52	44.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfoi	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA		Prop.	Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	000		[Veh. veh	Dist]		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	sec		ven	m		_		KIII/II
4	L2	278	0	293	0.0	0.197	7.5	LOSA	3.1	21.9	0.25	0.65	0.25	48.6
5	T1	1865	50	1963	2.7	* 0.669	0.8	LOSA	3.8	27.2	0.06	0.06	0.06	59.2
6	R2	4	0	4	0.0	0.012	9.6	LOSA	0.1	0.4	0.31	0.60	0.31	45.9
Appr	oach	2147	50	2260	2.3	0.669	1.7	LOSA	3.8	27.2	0.09	0.14	0.09	57.6
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.605	96.0	LOS F	0.7	4.9	1.00	0.69	1.26	17.4
8	T1	2	0	2	0.0	* 0.605	91.4	LOS F	0.7	4.9	1.00	0.69	1.26	16.8
9	R2	5	0	5	0.0	0.605	96.0	LOS F	0.7	4.9	1.00	0.69	1.26	17.4
Appr	oach	8	0	8	0.0	0.605	94.8	LOS F	0.7	4.9	1.00	0.69	1.26	17.2
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	6	1	6	16.7	0.340	10.9	LOS B	10.3	75.0	0.33	0.31	0.33	48.7
11	T1	945	44	995	4.7	0.340	5.2	LOSA	10.3	75.0	0.33	0.30	0.33	55.3
12	R2	23	4	24	17.4	* 0.684	89.9	LOS F	1.9	15.1	1.00	0.77	1.25	23.3
Appr	oach	974	49	1025	5.0	0.684	7.2	LOSA	10.3	75.0	0.35	0.31	0.36	53.5
Sout	hWest:	Ikkina R	d (SW)											
1	L2	43	0	45	0.0	0.069	5.1	LOSA	0.2	1.7	0.13	0.53	0.13	50.0
2	T1	1	0	1	0.0	* 0.701	71.0	LOS E	7.8	54.9	1.00	0.84	1.09	19.5
3	R2	211	0	222	0.0	0.701	75.6	LOS E	7.8	54.9	1.00	0.84	1.09	25.5
Appr	oach	255	0	268	0.0	0.701	63.6	LOS E	7.8	54.9	0.85	0.79	0.93	27.8
All Vehic	cles	3384	99	3562	2.9	0.701	8.2	LOSA	10.3	75.0	0.22	0.24	0.23	52.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 PM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	300		VCII	- '''				KITI/TI
4	L2	400	0	421	0.0	0.418	25.5	LOS C	16.7	116.7	0.64	0.77	0.64	39.2
5	T1	910	20	958	2.2	0.422	16.8	LOS B	17.6	125.8	0.59	0.53	0.59	47.1
6	R2	2	0	2	0.0	* 0.014	14.8	LOS B	0.1	0.4	0.45	0.60	0.45	41.7
Appr	oach	1312	20	1381	1.5	0.422	19.4	LOS B	17.6	125.8	0.61	0.60	0.61	44.4
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
8	T1	1	0	1	0.0	* 0.532	91.0	LOS F	0.6	4.3	1.00	0.67	1.18	16.8
9	R2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.4
Appr	oach	7	0	7	0.0	0.532	94.9	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	* 0.606	11.5	LOS B	13.7	97.3	0.29	0.27	0.29	49.5
11	T1	1470	29	1547	2.0	0.606	6.0	LOS A	13.7	97.3	0.29	0.26	0.29	54.6
12	R2	41	5	43	12.2	0.321	74.1	LOS E	2.9	22.4	0.98	0.74	0.98	25.9
Appr	oach	1512	34	1592	2.2	0.606	7.8	LOSA	13.7	97.3	0.31	0.28	0.31	53.0
Sout	hWest:	Ikkina R	d (SW)											
1	L2	34	0	36	0.0	0.033	7.1	LOSA	0.4	3.1	0.24	0.56	0.24	48.7
2	T1	1	0	1	0.0	* 0.606	54.8	LOS D	13.1	91.4	0.96	0.82	0.96	22.4
3	R2	381	0	401	0.0	0.606	59.0	LOS E	13.1	91.4	0.95	0.81	0.95	28.8
Appr	oach	416	0	438	0.0	0.606	54.8	LOS D	13.1	91.4	0.89	0.79	0.89	29.8
All Vehic	cles	3247	54	3418	1.7	0.606	18.7	LOS B	17.6	125.8	0.50	0.48	0.50	44.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn		PUT	DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	JMES HV]	FLO' [Total	WS HV]	Satn	Delay	Service	QUE	EUE Dist]	Que	Stop Rate		Speed
		veh/h	veh/h	veh/h	пv ј %	v/c	sec		[Veh. veh	m m		Nate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	279	0	294	0.0	* 0.203	8.0	LOSA	3.5	24.4	0.28	0.66	0.28	48.3
5	T1	1041	31	1096	3.0	* 0.409	2.8	LOSA	4.5	32.2	0.13	0.12	0.13	57.4
6	R2	1	0	1	0.0	0.002	10.7	LOS B	0.0	0.1	0.32	0.58	0.32	45.0
Appro	oach	1321	31	1391	2.3	0.409	3.9	LOSA	4.5	32.2	0.16	0.23	0.16	55.2
North	East:	Cultural (Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.341	88.4	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.341	83.8	LOS F	0.7	5.1	1.00	0.65	1.00	17.8
9	R2	6	0	6	0.0	0.341	88.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
Appro	oach	9	0	9	0.0	0.341	87.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.2
North	West:	Gold Co	ast High	way (NW)										
10	L2	1	0	1	0.0	0.192	12.1	LOS B	5.6	41.4	0.35	0.30	0.35	48.9
11	T1	497	30	523	6.0	0.192	6.6	LOSA	5.6	41.4	0.35	0.30	0.35	54.1
12	R2	26	0	27	0.0	* 0.413	82.4	LOS F	2.0	13.8	1.00	0.71	1.00	24.5
Appro	oach	524	30	552	5.7	0.413	10.4	LOS B	5.6	41.4	0.38	0.32	0.38	51.1
South	nWest	: Ikkina R	d (SW)											
1	L2	50	1	53	2.0	0.052	5.1	LOSA	0.3	2.1	0.13	0.53	0.13	49.9
2	T1	3	0	3	0.0	0.225	59.8	LOS E	3.3	23.4	0.94	0.74	0.94	21.5
3	R2	99	0	104	0.0	0.225	64.3	LOS E	3.3	23.4	0.94	0.74	0.94	27.7
Appro	oach	152	1	160	0.7	0.225	44.8	LOS D	3.3	23.4	0.67	0.67	0.67	32.3
All Vehic	cles	2006	62	2112	3.1	0.413	9.0	LOSA	5.6	41.4	0.26	0.29	0.26	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov ID Crossing	Input	Dem.	Aver.			BACK OF	Prop. Ef		Travel	Travel	Aver.
ID Clossing	Vol.	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Iki	kina Rd	(SW)									

Site: 5 [2026 PM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Veh	icle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			ffective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	thEast:	Gold Coa	ast Hwy ((SE)										
4	L2	181	0	191	0.0	0.154	14.7	LOS B	4.7	33.1	0.40	0.68	0.40	44.4
5	T1	711	22	748	3.1	* 0.274	7.8	LOS A	9.0	65.0	0.39	0.34	0.39	53.2
6	R2	1	0	1	0.0	* 0.003	9.1	LOS A	0.0	0.1	0.29	0.59	0.29	46.3
Аррі	roach	893	22	940	2.5	0.274	9.2	LOSA	9.0	65.0	0.39	0.41	0.39	51.1
Nort	hEast:	Cultural C	Centre Ad	ccess (NE	Ξ)									
7	L2	1	0	1	0.0	0.281	96.2	LOS F	0.3	2.4	1.00	0.61	1.00	17.4
8	T1	1	0	1	0.0	* 0.281	91.6	LOS F	0.3	2.4	1.00	0.61	1.00	16.8
9	R2	1	1	1	100.0	0.281	97.0	LOS F	0.3	2.4	1.00	0.61	1.00	16.7
Аррі	roach	3	1	3	33.3	0.281	94.9	LOS F	0.3	2.4	1.00	0.61	1.00	17.0
Nort	hWest:	Gold Coa	ast High	way (NW)										
10	L2	2	0	2	0.0	0.290	6.0	LOSA	8.0	6.1	0.03	0.03	0.03	55.8
11	T1	824	28	867	3.4	0.290	0.5	LOS A	8.0	6.1	0.03	0.03	0.03	59.5
12	R2	37	3	39	8.1	0.282	73.6	LOS E	2.6	19.5	0.98	0.74	0.98	26.0
Аррі	roach	863	31	908	3.6	0.290	3.6	LOSA	2.6	19.5	0.07	0.06	0.07	56.4
Sout	thWest	: Ikkina R	d (SW)											
1	L2	39	1	41	2.6	0.093	49.4	LOS D	2.3	16.2	0.82	0.67	0.82	31.2
2	T1	1	0	1	0.0	* 0.268	66.5	LOS E	2.8	19.7	0.97	0.74	0.97	20.3
3	R2	80	0	84	0.0	0.268	71.0	LOS E	2.8	19.7	0.97	0.74	0.97	26.3
Аррі	roach	120	1	126	8.0	0.268	64.0	LOS E	2.8	19.7	0.92	0.72	0.92	27.7
All Vehi	cles	1879	55	1978	2.9	0.290	10.3	LOS B	9.0	65.0	0.28	0.27	0.28	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

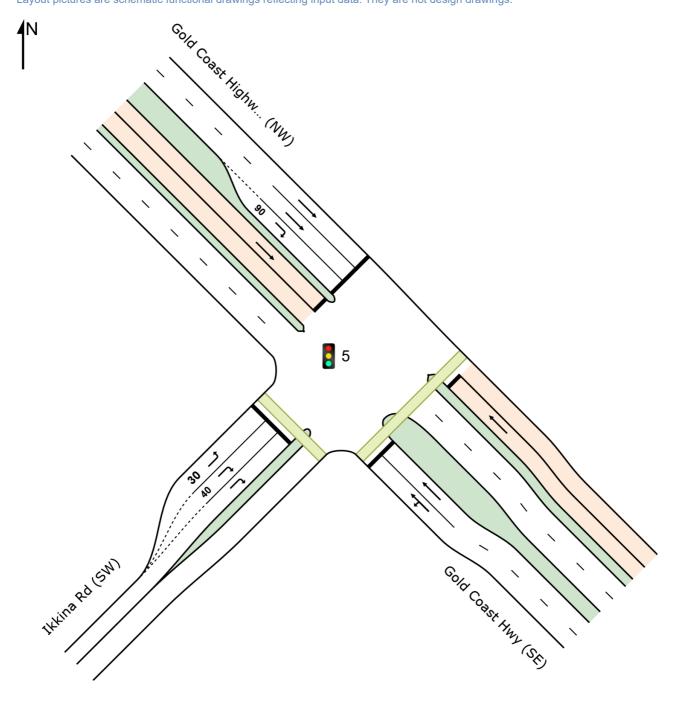
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov .	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

SITE LAYOUT


Site: 5 [2041 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2041 AM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	JMES	DEM FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	294	0	309	0.0	* 0.549	15.8	LOS B	17.9	126.5	0.43	0.55	0.43	45.4
5	T1	1008	30	1061	3.0	0.549	8.1	LOSA	17.9	126.5	0.33	0.36	0.33	52.5
Appro	oach	1302	30	1371	2.3	0.549	9.8	LOSA	17.9	126.5	0.36	0.40	0.36	50.6
North	West:	Gold Coa	ast High	way (NW)										
11	T1	240	15	253	6.3	0.126	19.6	LOS B	4.2	29.8	0.55	0.45	0.55	45.8
12	R2	43	5	45	11.6	* 0.148	58.2	LOS E	2.6	20.2	0.88	0.73	0.88	29.3
Appro	oach	283	20	298	7.1	0.148	25.5	LOS C	4.2	29.8	0.60	0.49	0.60	41.9
South	nWest:	Ikkina R	d (SW)											
1	L2	28	0	29	0.0	0.058	45.3	LOS D	1.5	10.4	0.78	0.70	0.78	32.0
3	R2	73	0	77	0.0	* 0.483	80.1	LOS F	2.8	19.3	1.00	0.73	1.00	24.6
Appro	oach	101	0	106	0.0	0.483	70.5	LOS E	2.8	19.3	0.94	0.72	0.94	26.3
All Vehic	eles	1686	50	1775	3.0	0.549	16.1	LOS B	17.9	126.5	0.43	0.44	0.43	46.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	ce contract							
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		AVERAGE QUE [Ped ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec
SouthEast: Go					peu	'''			300		111/300
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 5 [2041 PM (Site Folder: Option 3Ai)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¹				km/h
South	nEast:	Gold Coa	ast Hwy ((SE)										
4	L2	152	0	160	0.0	0.276	18.4	LOS B	8.1	57.3	0.43	0.55	0.43	43.8
5	T1	439	21	462	4.8	0.302	11.6	LOS B	8.1	57.3	0.35	0.36	0.35	50.2
Appro	oach	591	21	622	3.6	0.302	13.3	LOS B	8.1	57.3	0.37	0.41	0.37	48.1
North	West:	Gold Co	ast High	way (NW)										
11	T1	569	17	599	3.0	* 0.302	22.0	LOS C	11.5	81.4	0.63	0.54	0.63	44.3
12	R2	36	1	38	2.8	* 0.117	57.6	LOS E	2.2	15.6	0.87	0.73	0.87	29.5
Appro	oach	605	18	637	3.0	0.302	24.1	LOS C	11.5	81.4	0.64	0.55	0.64	42.9
South	nWest	Ikkina R	d (SW)											
1	L2	28	2	29	7.1	0.049	38.5	LOS D	1.3	10.0	0.71	0.68	0.71	34.0
3	R2	110	0	116	0.0	* 0.291	68.0	LOS E	3.7	26.1	0.96	0.75	0.96	26.8
Appro	oach	138	2	145	1.4	0.291	62.0	LOS E	3.7	26.1	0.91	0.74	0.91	28.0
All Vehic	les	1334	41	1404	3.1	0.302	23.2	LOS C	11.5	81.4	0.55	0.51	0.55	42.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

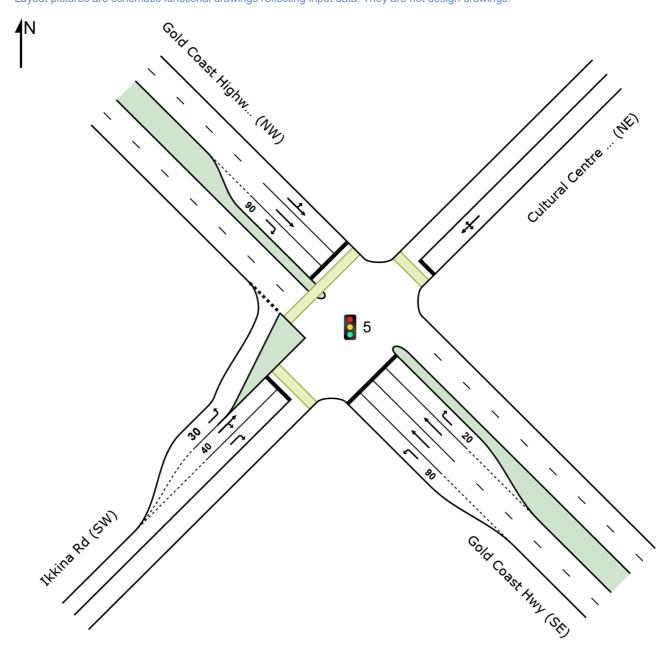
Pedestrian I	<u> </u>	<u> </u>	<u> </u>	· ·	A) /ED A O.E	DAOK OF	D 5	CC 41	Toward	Towns	A
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. E	Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
SouthEast: Go	old Coas	t Hwy (S	E)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT


Site: 5 [2021 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2021 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	hEast:	Gold Coa	ast Hwy	(SE)										
4	L2	701	0	738	0.0	* 0.520	9.5	LOSA	13.5	94.2	0.42	0.72	0.42	47.4
5	T1	1330	49	1400	3.7	* 0.537	4.1	LOSA	8.7	62.6	0.20	0.18	0.20	56.2
6	R2	1	0	1	0.0	0.003	11.7	LOS B	0.0	0.1	0.37	0.59	0.37	44.1
Appr	oach	2032	49	2139	2.4	0.537	6.0	LOSA	13.5	94.2	0.28	0.37	0.28	52.8
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	1	0	1	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
8	T1	1	0	1	0.0	* 0.343	83.8	LOS F	0.7	5.1	1.00	0.66	1.00	17.7
9	R2	7	0	7	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
Appr	oach	9	0	9	0.0	0.343	87.9	LOS F	0.7	5.1	1.00	0.66	1.00	18.2
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	0.334	13.4	LOS B	11.4	83.0	0.40	0.36	0.40	47.6
11	T1	863	43	908	5.0	0.334	7.9	LOSA	11.4	83.0	0.40	0.36	0.40	53.1
12	R2	39	1	41	2.6	* 0.525	81.6	LOS F	3.0	21.1	1.00	0.74	1.02	24.6
Appr	oach	905	44	953	4.9	0.525	11.1	LOS B	11.4	83.0	0.43	0.38	0.43	50.6
South	hWest	: Ikkina R	d (SW)											
1	L2	50	2	53	4.0	0.059	5.6	LOSA	0.4	3.0	0.17	0.54	0.17	49.5
2	T1	1	0	1	0.0	0.496	62.4	LOS E	7.7	53.9	0.98	0.79	0.98	21.0
3	R2	224	0	236	0.0	0.496	67.0	LOS E	7.7	53.9	0.98	0.79	0.98	27.1
Appr	oach	275	2	289	0.7	0.496	55.8	LOS E	7.7	53.9	0.83	0.75	0.83	29.5
All Vehic	cles	3221	95	3391	2.9	0.537	11.9	LOS B	13.5	94.2	0.37	0.40	0.37	48.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	٧ol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2021 PM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA		Prop.	Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	300		VCII	- ''				KIII/II
4	L2	396	0	417	0.0	0.449	29.4	LOS C	18.0	126.2	0.69	0.79	0.69	37.7
5	T1	872	28	918	3.2	0.439	20.2	LOS C	18.4	132.7	0.65	0.57	0.65	45.1
6	R2	1	0	1	0.0	* 0.007	18.0	LOS B	0.0	0.2	0.52	0.59	0.52	39.6
Appr	oach	1269	28	1336	2.2	0.449	23.1	LOS C	18.4	132.7	0.66	0.64	0.66	42.5
North	nEast:	Cultural (Centre A	ccess (NE)									
7	L2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
8	T1	1	0	1	0.0	* 0.379	90.1	LOS F	0.4	3.0	1.00	0.63	1.03	17.0
9	R2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
Appr	oach	5	0	5	0.0	0.379	93.7	LOS F	0.4	3.0	1.00	0.63	1.03	17.4
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	* 0.617	15.1	LOS B	18.2	128.8	0.40	0.37	0.40	46.1
11	T1	1402	22	1476	1.6	0.617	9.6	LOS A	18.2	128.8	0.40	0.37	0.40	51.9
12	R2	33	0	35	0.0	0.238	73.0	LOS E	2.3	16.1	0.97	0.73	0.97	26.2
Appr	oach	1438	22	1514	1.5	0.617	11.0	LOS B	18.2	128.8	0.41	0.37	0.41	50.7
Sout	hWest:	Ikkina R	d (SW)											
1	L2	41	0	43	0.0	0.056	31.7	LOS C	1.9	13.0	0.64	0.64	0.64	36.7
2	T1	3	0	3	0.0	* 0.611	49.4	LOS D	15.8	110.4	0.93	0.82	0.93	23.6
3	R2	456	0	480	0.0	0.611	53.3	LOS D	15.8	110.4	0.92	0.81	0.92	30.1
Appr	oach	500	0	526	0.0	0.611	51.5	LOS D	15.8	110.4	0.89	0.80	0.89	30.6
All Vehic	cles	3212	50	3381	1.6	0.617	22.2	LOS C	18.4	132.7	0.59	0.55	0.59	42.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	791	0	833	0.0	* 0.565	8.9	LOSA	14.5	101.2	0.41	0.72	0.41	47.8
5	T1	1369	50	1441	3.7	* 0.584	6.9	LOSA	13.8	99.8	0.31	0.28	0.31	53.9
6	R2	4	0	4	0.0	0.014	14.7	LOS B	0.1	0.7	0.45	0.61	0.45	41.8
Appro	oach	2164	50	2278	2.3	0.584	7.6	LOSA	14.5	101.2	0.35	0.44	0.35	51.5
North	East:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.605	96.0	LOS F	0.7	4.9	1.00	0.69	1.26	17.4
8	T1	2	0	2	0.0	* 0.605	91.4	LOS F	0.7	4.9	1.00	0.69	1.26	16.8
9	R2	5	0	5	0.0	0.605	96.0	LOS F	0.7	4.9	1.00	0.69	1.26	17.4
Appro	oach	8	0	8	0.0	0.605	94.8	LOS F	0.7	4.9	1.00	0.69	1.26	17.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	6	1	6	16.7	0.374	16.8	LOS B	14.1	103.0	0.48	0.44	0.48	43.6
11	T1	895	44	942	4.9	0.374	11.0	LOS B	14.1	103.1	0.48	0.43	0.48	50.8
12	R2	25	4	26	16.0	* 0.553	86.1	LOS F	2.0	15.7	1.00	0.74	1.08	23.9
Appro	oach	926	49	975	5.3	0.553	13.1	LOS B	14.1	103.1	0.50	0.44	0.50	49.3
South	nWest	: Ikkina R	d (SW)											
1	L2	49	0	52	0.0	0.056	6.4	LOSA	0.6	3.9	0.22	0.56	0.22	49.1
2	T1	1	0	1	0.0	0.390	53.3	LOS D	8.1	57.0	0.92	0.79	0.92	22.8
3	R2	261	0	275	0.0	0.390	57.9	LOS E	8.4	58.7	0.92	0.79	0.92	29.1
Appro	oach	311	0	327	0.0	0.390	49.7	LOS D	8.4	58.7	0.81	0.75	0.81	31.0
All Vehic	eles	3409	99	3588	2.9	0.605	13.2	LOS B	14.5	103.1	0.43	0.47	0.43	47.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov .	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 PM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Nov Turn NPUT VOLUMES FLOWS Satin Deg. Satin Deg. Satin Deglay Service Satin Prop. Effective Que Stop Cut Volumes Total HV Veh/h Veh/h			_								rmance	t Perfo	ovemen	icle M	Veh
Total veh/h veh	Aver. Aver.													Turn	
Veh/h Veh/h Veh/h Veh/h % V/c sec veh m SouthEast: Gold Coast Hwy (SE) 4 L2 413 0 435 0.0 0.420 24.4 LOS C 16.8 117.8 0.62 0.77 5 T1 898 20 945 2.2 0.406 15.6 LOS B 16.7 119.3 0.57 0.51 6 R2 2 0 2 0.0 *0.014 13.8 LOS B 16.7 119.3 0.57 0.51 6 R2 2 0 2 0.0 *0.014 13.8 LOS B 16.8 119.3 0.59 0.50 NorthEast: Cultural Centre Access (NE) Very Lipida Very Lipida Very Lipida Very Lipida No.59 0.53 3.7 1.00 0.65 8 T1 1 0 1 0.0 *0.456 95.1 LOS F 0.5	No. Speed			Que			Service	Delay	Satn						ID
SouthEast: Gold Coast Hwy (SE) 4	km/h	Cycles	Nate					sec	v/c						
5 T1 898 20 945 2.2 0.406 15.6 LOS B 16.7 119.3 0.57 0.51 6 R2 2 0 2 0.0 *0.014 13.8 LOS B 0.0 0.3 0.42 0.60 Approach 1313 20 1382 1.5 0.420 18.4 LOS B 16.8 119.3 0.59 0.59 NorthEast: Cultural Centre Access (NE) 7 L2 3 0 3 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 8 T1 1 0 1 0.0 *0.456 95.1 LOS F 0.5 3.7 1.00 0.65 9 R2 2 0 2 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 Approach 6 0 6 0.0 0.456 94.4 LOS B											(SE)		Gold Coa	hEast:	Sout
6 R2 2 0 2 0.0 *0.014 13.8 LOS B 0.0 0.3 0.42 0.60 Approach 1313 20 1382 1.5 0.420 18.4 LOS B 16.8 119.3 0.59 0.59 NorthEast: Cultural Centre Access (NE) 7 L2 3 0 3 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 8 T1 1 0 1 0.0 *0.456 90.6 LOS F 0.5 3.7 1.00 0.65 9 R2 2 0 2 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 Approach 6 0 6 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 NorthWest: Gold Coast Highway (NW) 10 L2 1 0 1 0.0 *0.604 10.5 LOS B 12.0 85.6 0.25 0.23 11 T1 1497 29 1576 1.9 0.604 4.9 LOS A 12.0 85.6 0.25 0.23 12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 *0.603 56.4 LOS E 12.3 86.0 0.96 0.81	0.62 39.7	0.62	0.77	0.62	117.8	16.8	LOS C	24.4	0.420	0.0	435	0	413	L2	4
Approach 1313 20 1382 1.5 0.420 18.4 LOS B 16.8 119.3 0.59 0.59 NorthEast: Cultural Centre Access (NE) 7 L2 3 0 3 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 8 T1 1 0 1 0.0 *0.456 90.6 LOS F 0.5 3.7 1.00 0.65 9 R2 2 0 2 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 Approach 6 0 6 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 NorthWest: Gold Coast Highway (NW)	0.57 47.8	0.57	0.51	0.57	119.3	16.7	LOS B	15.6	0.406	2.2	945	20	898	T1	5
NorthEast: Cultural Centre Access (NE) 7	0.42 42.5	0.42	0.60	0.42	0.3	0.0	LOS B	13.8	* 0.014	0.0	2	0	2	R2	6
7	0.59 44.9	0.59	0.59	0.59	119.3	16.8	LOS B	18.4	0.420	1.5	1382	20	1313	roach	Аррі
8 T1 1 0 1 0.0 *0.456 90.6 LOS F 0.5 3.7 1.00 0.65 9 R2 2 0 2 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 Approach 6 0 6 0.0 0.456 94.4 LOS F 0.5 3.7 1.00 0.65 NorthWest: Gold Coast Highway (NW) 10 L2 1 0 1 0.0 *0.604 10.5 LOS B 12.0 85.6 0.25 0.23 11 T1 1497 29 1576 1.9 0.604 4.9 LOS A 12.0 85.6 0.25 0.23 12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 *0.603 56.4 LOS E 12.3 86.0 0.96 0.81										Ξ)	ccess (NE	Centre A	Cultural (hEast:	Nort
9 R2 2 0 2 0.0 0.456 95.1 LOS F 0.5 3.7 1.00 0.65 Approach 6 0 6 0.0 0.456 94.4 LOS F 0.5 3.7 1.00 0.65 NorthWest: Gold Coast Highway (NW) 10 L2 1 0 1 0.0 *0.604 10.5 LOS B 12.0 85.6 0.25 0.23 11 T1 1497 29 1576 1.9 0.604 4.9 LOS A 12.0 85.6 0.25 0.23 12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 *0.603 56.4 LOS E 12.3 86.0 0.96 0.81	1.10 17.4	1.10	0.65	1.00	3.7	0.5	LOS F	95.1	0.456	0.0	3	0	3	L2	7
Approach 6 0 6 0.0 0.456 94.4 LOS F 0.5 3.7 1.00 0.65 NorthWest: Gold Coast Highway (NW) 10 L2 1 0 1 0.0 *0.604 *10.5 LOS B 12.0 85.6 0.25 0.23	1.10 16.9	1.10	0.65	1.00	3.7	0.5	LOS F	90.6	* 0.456	0.0	1	0	1	T1	8
NorthWest: Gold Coast Highway (NW) 10	1.10 17.4	1.10	0.65	1.00	3.7	0.5	LOS F	95.1	0.456	0.0	2	0	2	R2	9
10 L2 1 0 1 0.0 * 0.604 10.5 LOS B 12.0 85.6 0.25 0.23 11 T1 1497 29 1576 1.9 0.604 4.9 LOS A 12.0 85.6 0.25 0.23 12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 * 0.603 56.4 LOS E 12.3 86.0 0.96 0.81	1.10 17.3	1.10	0.65	1.00	3.7	0.5	LOS F	94.4	0.456	0.0	6	0	6	roach	Аррі
11 T1 1497 29 1576 1.9 0.604 4.9 LOS A 12.0 85.6 0.25 0.23 12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 * 0.603 56.4 LOS E 12.3 86.0 0.96 0.81											way (NW	ast High	Gold Co	hWest:	Nort
12 R2 37 5 39 13.5 0.293 73.9 LOS E 2.6 20.4 0.98 0.74 Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 * 0.603 56.4 LOS E 12.3 86.0 0.96 0.81	0.25 50.6	0.25	0.23	0.25	85.6	12.0	LOS B	10.5	* 0.604	0.0	1	0	1	L2	10
Approach 1535 34 1616 2.2 0.604 6.6 LOS A 12.0 85.6 0.27 0.24 SouthWest: Ikkina Rd (SW) 1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 * 0.603 56.4 LOS E 12.3 86.0 0.96 0.81	0.25 55.5	0.25	0.23	0.25	85.6	12.0	LOSA	4.9	0.604	1.9	1576	29	1497	T1	11
SouthWest: Ikkina Rd (SW) 1	0.98 26.0	0.98	0.74	0.98	20.4	2.6	LOS E	73.9	0.293	13.5	39	5	37	R2	12
1 L2 32 0 34 0.0 0.031 6.9 LOS A 0.4 2.8 0.23 0.56 2 T1 3 0 3 0.0 *0.603 56.4 LOS E 12.3 86.0 0.96 0.81	0.27 54.0	0.27	0.24	0.27	85.6	12.0	LOSA	6.6	0.604	2.2	1616	34	1535	roach	Аррі
2 T1 3 0 3 0.0 *0.603 56.4 LOSE 12.3 86.0 0.96 0.81												d (SW)	: Ikkina R	hWest	Sout
	0.23 48.8	0.23	0.56	0.23	2.8	0.4	LOSA	6.9	0.031	0.0	34	0	32	L2	1
3 R2 357 0 376 0.0 0.603 60.7 LOSE 12.3 86.0 0.96 0.81	0.96 22.1	0.96	0.81	0.96	86.0	12.3	LOS E	56.4	* 0.603	0.0	3	0	3	T1	2
	0.96 28.4	0.96	0.81	0.96	86.0	12.3	LOS E	60.7	0.603	0.0	376	0	357	R2	3
Approach 392 0 413 0.0 0.603 56.3 LOS E 12.3 86.0 0.90 0.79	0.90 29.4	0.90	0.79	0.90	86.0	12.3	LOS E	56.3	0.603	0.0	413	0	392	roach	Аррі
All 3246 54 3417 1.7 0.604 17.5 LOSB 16.8 119.3 0.47 0.45 Vehicles	0.47 45.6	0.47	0.45	0.47	119.3	16.8	LOS B	17.5	0.604	1.7	3417	54	3246	cles	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	281	0	296	0.0	* 0.208	8.4	LOSA	3.8	26.9	0.30	0.66	0.30	48.1
5	T1	1039	31	1094	3.0	* 0.408	2.8	LOSA	4.5	32.1	0.13	0.12	0.13	57.4
6	R2	1	0	1	0.0	0.002	10.1	LOS B	0.0	0.1	0.31	0.58	0.31	45.4
Appro	oach	1321	31	1391	2.3	0.408	4.0	LOSA	4.5	32.1	0.17	0.24	0.17	55.1
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	1	0	1	0.0	0.341	88.4	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.341	83.8	LOS F	0.7	5.1	1.00	0.65	1.00	17.8
9	R2	6	0	6	0.0	0.341	88.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
Appro	oach	9	0	9	0.0	0.341	87.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	0.191	12.1	LOS B	5.6	41.1	0.35	0.30	0.35	48.9
11	T1	494	30	520	6.1	0.191	6.6	LOSA	5.6	41.1	0.35	0.30	0.35	54.2
12	R2	29	0	31	0.0	* 0.384	80.6	LOS F	2.2	15.2	1.00	0.72	1.00	24.8
Appro	oach	524	30	552	5.7	0.384	10.7	LOS B	5.6	41.1	0.38	0.32	0.38	50.8
South	nWest	: Ikkina R	d (SW)											
1	L2	56	1	59	1.8	0.058	5.1	LOSA	0.3	2.4	0.13	0.53	0.13	49.9
2	T1	3	0	3	0.0	0.260	62.1	LOS E	3.5	24.6	0.95	0.75	0.95	21.1
3	R2	102	0	107	0.0	0.260	66.7	LOS E	3.5	24.6	0.95	0.75	0.95	27.2
Appro	oach	161	1	169	0.6	0.260	45.2	LOS D	3.5	24.6	0.67	0.67	0.67	32.2
All Vehic	cles	2015	62	2121	3.1	0.408	9.4	LOSA	5.6	41.1	0.27	0.29	0.27	50.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 PM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	179	1	188	0.6	0.155	15.1	LOS B	4.8	33.6	0.41	0.69	0.41	44.2
5	T1	713	22	751	3.1	* 0.278	8.2	LOSA	9.3	66.8	0.40	0.35	0.40	52.9
6	R2	1	0	1	0.0	* 0.002	9.3	LOSA	0.0	0.1	0.30	0.59	0.30	46.2
Appro	oach	893	23	940	2.6	0.278	9.6	LOSA	9.3	66.8	0.40	0.42	0.40	50.9
North	nEast:	Cultural C	Centre A	ccess (NE	:)									
7	L2	1	0	1	0.0	0.281	96.2	LOS F	0.3	2.4	1.00	0.61	1.00	17.4
8	T1	1	0	1	0.0	* 0.281	91.6	LOS F	0.3	2.4	1.00	0.61	1.00	16.8
9	R2	1	1	1	100.0	0.281	97.0	LOS F	0.3	2.4	1.00	0.61	1.00	16.7
Appro	oach	3	1	3	33.3	0.281	94.9	LOS F	0.3	2.4	1.00	0.61	1.00	17.0
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	2	0	2	0.0	0.287	6.1	LOS A	8.0	5.9	0.03	0.03	0.03	55.7
11	T1	809	28	852	3.5	0.287	0.5	LOS A	8.0	5.9	0.03	0.03	0.03	59.5
12	R2	36	3	38	8.3	0.275	73.6	LOS E	2.5	19.0	0.98	0.74	0.98	26.0
Appro	oach	847	31	892	3.7	0.287	3.6	LOSA	2.5	19.0	0.07	0.06	0.07	56.4
South	nWest	: Ikkina R	d (SW)											
1	L2	45	1	47	2.2	0.104	48.8	LOS D	2.6	18.5	0.81	0.68	0.81	31.4
2	T1	1	0	1	0.0	* 0.287	65.5	LOS E	3.2	22.7	0.97	0.74	0.97	20.4
3	R2	93	0	98	0.0	0.287	70.1	LOS E	3.2	22.7	0.97	0.74	0.97	26.5
Appro	oach	139	1	146	0.7	0.287	63.1	LOS E	3.2	22.7	0.92	0.72	0.92	27.9
All Vehic	cles	1882	56	1981	3.0	0.287	11.0	LOS B	9.3	66.8	0.29	0.28	0.29	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

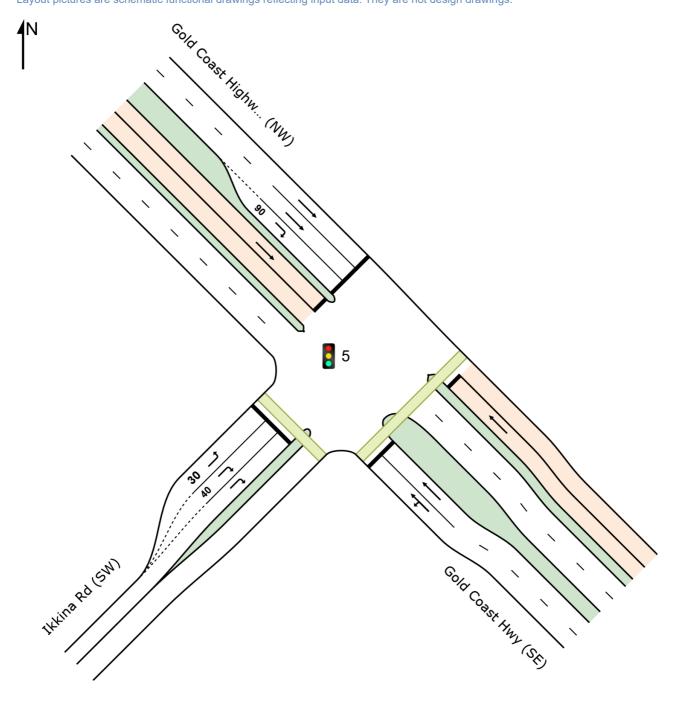
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Iki	kina Rd	(SW)									

SITE LAYOUT


Site: 5 [2041 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2041 AM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	292	0	307	0.0	* 0.545	15.8	LOS B	17.7	125.1	0.43	0.55	0.43	45.4
5	T1	1001	30	1054	3.0	0.545	8.0	LOSA	17.7	125.1	0.33	0.36	0.33	52.5
Appr	oach	1293	30	1361	2.3	0.545	9.8	LOSA	17.7	125.1	0.36	0.40	0.36	50.6
North	West:	Gold Coa	ast High	way (NW)										
11	T1	238	15	251	6.3	0.126	19.6	LOS B	4.1	29.5	0.55	0.45	0.55	45.8
12	R2	44	5	46	11.4	* 0.151	58.2	LOS E	2.7	20.6	0.88	0.74	0.88	29.3
Appr	oach	282	20	297	7.1	0.151	25.6	LOS C	4.1	29.5	0.61	0.50	0.61	41.8
South	nWest:	Ikkina R	d (SW)											
1	L2	31	0	33	0.0	0.064	45.4	LOS D	1.6	11.5	0.78	0.70	0.78	32.0
3	R2	73	0	77	0.0	* 0.483	80.1	LOS F	2.8	19.3	1.00	0.73	1.00	24.6
Appr	oach	104	0	109	0.0	0.483	69.8	LOS E	2.8	19.3	0.93	0.72	0.93	26.4
All Vehic	cles	1679	50	1767	3.0	0.545	16.2	LOS B	17.7	125.1	0.43	0.44	0.43	46.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	ce contract							
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		AVERAGE QUE [Ped ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec
SouthEast: Go					peu	'''			300		111/300
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 5 [2041 PM (Site Folder: Option 3Aii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfoi	rmance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>I</i> QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¹			,	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	150	0	158	0.0	0.276	18.3	LOS B	8.1	57.1	0.43	0.55	0.43	43.9
5	T1	441	21	464	4.8	0.276	11.5	LOS B	8.1	57.1	0.35	0.36	0.35	50.2
Appro	oach	591	21	622	3.6	0.276	13.3	LOS B	8.1	57.1	0.37	0.41	0.37	48.2
North	West:	Gold Co	ast High	way (NW)										
11	T1	566	17	596	3.0	* 0.301	22.5	LOS C	11.6	82.1	0.63	0.55	0.63	44.0
12	R2	31	1	33	3.2	* 0.101	57.4	LOS E	1.9	13.4	0.87	0.72	0.87	29.5
Appro	oach	597	18	628	3.0	0.301	24.3	LOS C	11.6	82.1	0.65	0.55	0.65	42.8
South	nWest	: Ikkina R	d (SW)											
1	L2	26	2	27	7.7	0.046	38.4	LOS D	1.2	9.3	0.71	0.68	0.71	34.0
3	R2	112	0	118	0.0	* 0.296	68.1	LOS E	3.8	26.6	0.96	0.75	0.96	26.8
Appro	oach	138	2	145	1.4	0.296	62.5	LOS E	3.8	26.6	0.91	0.74	0.91	27.9
All Vehic	eles	1326	41	1396	3.1	0.301	23.4	LOS C	11.6	82.1	0.55	0.51	0.55	42.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

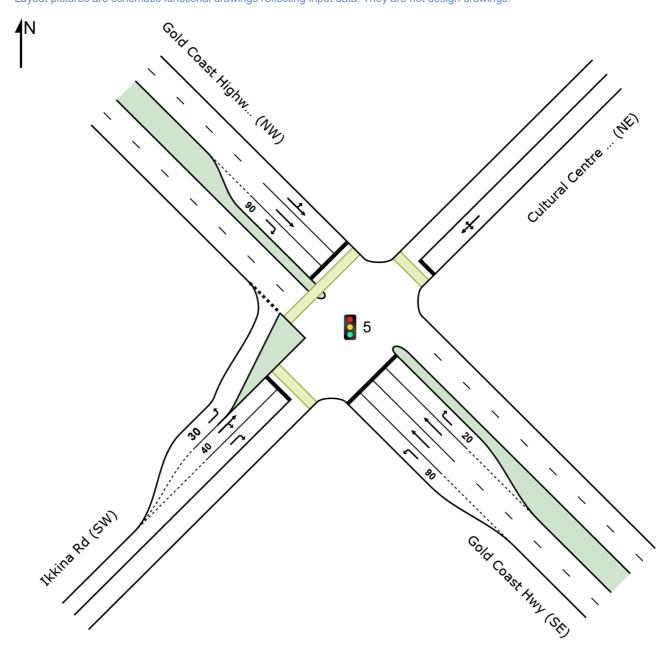
Pedestrian I	Movem	ent Perf	orman	ce contract							
Mov ID Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		AVERAGE QUE [Ped ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed m/sec
SouthEast: Go					peu	'''			300		111/300
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT


Site: 5 [2021 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2021 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	711	0	748	0.0	* 0.522	9.3	LOSA	13.2	92.2	0.41	0.71	0.41	47.5
5	T1	1329	49	1399	3.7	* 0.536	4.1	LOSA	8.7	62.5	0.20	0.18	0.20	56.2
6	R2	1	0	1	0.0	0.003	12.0	LOS B	0.0	0.1	0.38	0.59	0.38	43.9
Appr	oach	2041	49	2148	2.4	0.536	5.9	LOSA	13.2	92.2	0.28	0.37	0.28	52.9
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	1	0	1	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
8	T1	1	0	1	0.0	* 0.343	83.8	LOS F	0.7	5.1	1.00	0.66	1.00	17.7
9	R2	7	0	7	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
Appr	oach	9	0	9	0.0	0.343	87.9	LOS F	0.7	5.1	1.00	0.66	1.00	18.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	0.340	13.8	LOS B	11.8	86.0	0.42	0.37	0.42	47.2
11	T1	870	43	916	4.9	0.340	8.3	LOSA	11.8	86.0	0.42	0.37	0.42	52.8
12	R2	33	1	35	3.0	* 0.535	83.4	LOS F	2.5	18.2	1.00	0.74	1.04	24.4
Appr	oach	906	44	954	4.9	0.535	11.0	LOS B	11.8	86.0	0.44	0.39	0.44	50.6
South	nWest:	: Ikkina R	d (SW)											
1	L2	46	2	48	4.3	0.055	5.6	LOSA	0.4	2.7	0.17	0.54	0.17	49.5
2	T1	1	0	1	0.0	0.457	61.1	LOS E	7.4	51.8	0.97	0.79	0.97	21.2
3	R2	218	0	229	0.0	0.457	65.7	LOS E	7.4	51.8	0.97	0.79	0.97	27.4
Appr	oach	265	2	279	8.0	0.457	55.2	LOS E	7.4	51.8	0.83	0.75	0.83	29.7
All Vehic	cles	3221	95	3391	2.9	0.536	11.6	LOS B	13.2	92.2	0.37	0.41	0.37	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2021 PM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEMA		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV 1	FLO' [Total		Satn	Delay	Service		EUE Diet 1	Que	Stop		Speed
		veh/h	veh/h	t iotai veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa		(SE)										
4	L2	400	0	421	0.0	0.453	29.5	LOS C	18.3	127.9	0.69	0.79	0.69	37.6
5	T1	858	27	903	3.1	0.431	20.1	LOS C	18.1	129.8	0.64	0.57	0.64	45.1
6	R2	1	0	1	0.0	* 0.007	18.0	LOS B	0.0	0.2	0.52	0.59	0.52	39.6
Appr	oach	1259	27	1325	2.1	0.453	23.1	LOS C	18.3	129.8	0.66	0.64	0.66	42.4
North	nEast:	Cultural (Centre A	ccess (NE)									
7	L2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
8	T1	1	0	1	0.0	* 0.379	90.1	LOS F	0.4	3.0	1.00	0.63	1.03	17.0
9	R2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
Appr	oach	5	0	5	0.0	0.379	93.7	LOS F	0.4	3.0	1.00	0.63	1.03	17.4
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	* 0.617	15.1	LOS B	18.2	128.8	0.40	0.37	0.40	46.1
11	T1	1402	22	1476	1.6	0.617	9.6	LOSA	18.2	128.8	0.40	0.37	0.40	51.9
12	R2	35	0	37	0.0	0.252	73.1	LOS E	2.4	17.1	0.98	0.73	0.98	26.1
Appr	oach	1440	22	1516	1.5	0.617	11.1	LOS B	18.2	128.8	0.41	0.37	0.41	50.6
South	hWest	: Ikkina R	d (SW)											
1	L2	37	0	39	0.0	0.051	31.6	LOS C	1.7	11.7	0.64	0.63	0.64	36.8
2	T1	3	0	3	0.0	* 0.613	49.5	LOS D	16.0	111.8	0.93	0.82	0.93	23.6
3	R2	459	0	483	0.0	0.613	53.4	LOS D	16.0	111.8	0.92	0.81	0.92	30.1
Appr	oach	499	0	525	0.0	0.613	51.7	LOS D	16.0	111.8	0.90	0.80	0.90	30.5
All Vehic	cles	3203	49	3372	1.5	0.617	22.3	LOS C	18.3	129.8	0.59	0.55	0.59	42.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time	Dist. S	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd ((SW)									

Site: 5 [2024 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA		Prop.	Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist]		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	Sec		ven	m		_		KIII/II
4	L2	758	0	798	0.0	* 0.547	8.9	LOSA	13.4	93.6	0.41	0.71	0.41	47.8
5	T1	1392	50	1465	3.6	* 0.562	4.2	LOSA	9.5	68.7	0.21	0.19	0.21	56.1
6	R2	4	0	4	0.0	0.014	12.8	LOS B	0.1	0.6	0.40	0.61	0.40	43.3
Appr	oach	2154	50	2267	2.3	0.562	5.9	LOSA	13.4	93.6	0.28	0.38	0.28	52.9
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.303	88.1	LOS F	0.6	4.5	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.303	83.5	LOS F	0.6	4.5	1.00	0.65	1.00	17.8
9	R2	5	0	5	0.0	0.303	88.1	LOS F	0.6	4.5	1.00	0.65	1.00	18.4
Appr	oach	8	0	8	0.0	0.303	87.0	LOS F	0.6	4.5	1.00	0.65	1.00	18.3
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	6	1	6	16.7	0.372	14.7	LOS B	13.4	97.9	0.44	0.40	0.44	45.3
11	T1	940	44	989	4.7	0.372	8.9	LOSA	13.5	98.0	0.44	0.40	0.44	52.3
12	R2	25	4	26	16.0	* 0.553	86.1	LOS F	2.0	15.7	1.00	0.74	1.08	23.9
Appr	oach	971	49	1022	5.0	0.553	11.0	LOS B	13.5	98.0	0.45	0.40	0.45	50.7
Sout	hWest:	Ikkina R	d (SW)											
1	L2	44	0	46	0.0	0.052	5.7	LOSA	0.4	2.7	0.17	0.55	0.17	49.6
2	T1	1	0	1	0.0	0.423	59.0	LOS E	7.4	51.9	0.95	0.79	0.95	21.6
3	R2	223	0	235	0.0	0.423	63.5	LOS E	7.4	51.9	0.95	0.79	0.95	27.8
Appr	oach	268	0	282	0.0	0.423	54.0	LOS D	7.4	51.9	0.83	0.75	0.83	30.0
All Vehic	cles	3401	99	3580	2.9	0.562	11.3	LOS B	13.5	98.0	0.37	0.41	0.37	49.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 PM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% B <i>A</i> QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	hEast:	Gold Coa	ast Hwy	(SE)										
4	L2	413	0	435	0.0	0.426	25.1	LOS C	17.1	119.7	0.63	0.77	0.63	39.4
5	T1	898	20	945	2.2	0.411	16.1	LOS B	17.0	121.5	0.58	0.52	0.58	47.5
6	R2	2	0	2	0.0	* 0.014	14.3	LOS B	0.0	0.3	0.43	0.60	0.43	42.1
Appr	oach	1313	20	1382	1.5	0.426	18.9	LOS B	17.1	121.5	0.60	0.60	0.60	44.6
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	3	0	3	0.0	0.456	95.1	LOS F	0.5	3.7	1.00	0.65	1.10	17.4
8	T1	1	0	1	0.0	* 0.456	90.6	LOS F	0.5	3.7	1.00	0.65	1.10	16.9
9	R2	2	0	2	0.0	0.456	95.1	LOS F	0.5	3.7	1.00	0.65	1.10	17.4
Appr	oach	6	0	6	0.0	0.456	94.4	LOS F	0.5	3.7	1.00	0.65	1.10	17.3
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	* 0.601	11.0	LOS B	12.7	90.5	0.27	0.25	0.27	50.1
11	T1	1475	29	1553	2.0	0.601	5.4	LOSA	12.7	90.5	0.27	0.25	0.27	55.1
12	R2	37	5	39	13.5	0.293	73.9	LOS E	2.6	20.4	0.98	0.74	0.98	26.0
Appr	oach	1513	34	1593	2.2	0.601	7.1	LOSA	12.7	90.5	0.28	0.26	0.28	53.6
South	hWest	: Ikkina R	d (SW)											
1	L2	31	0	33	0.0	0.030	6.9	LOSA	0.4	2.7	0.23	0.56	0.23	48.8
2	T1	1	0	1	0.0	* 0.596	55.5	LOS E	12.5	87.8	0.96	0.82	0.96	22.3
3	R2	367	0	386	0.0	0.596	59.8	LOS E	12.5	87.8	0.95	0.81	0.95	28.6
Appr	oach	399	0	420	0.0	0.596	55.7	LOS E	12.5	87.8	0.90	0.79	0.90	29.6
All Vehic	cles	3231	54	3401	1.7	0.601	18.1	LOS B	17.1	121.5	0.49	0.46	0.49	45.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfoi	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% B <i>A</i>			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist]		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	Sec		ven	m	_			KIII/II
4	L2	285	0	300	0.0	* 0.215	8.8	LOSA	4.3	29.8	0.32	0.67	0.32	47.8
5	T1	1035	31	1089	3.0	* 0.411	3.2	LOSA	5.0	35.9	0.15	0.13	0.15	57.0
6	R2	1	0	1	0.0	0.002	9.9	LOSA	0.0	0.1	0.31	0.58	0.31	45.7
Appr	oach	1321	31	1391	2.3	0.411	4.4	LOSA	5.0	35.9	0.19	0.25	0.19	54.8
North	nEast:	Cultural (Centre A	ccess (NE	i)									
7	L2	1	0	1	0.0	0.341	88.4	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.341	83.8	LOS F	0.7	5.1	1.00	0.65	1.00	17.8
9	R2	6	0	6	0.0	0.341	88.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
Appr	oach	9	0	9	0.0	0.341	87.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.2
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	0.189	11.8	LOS B	5.4	40.1	0.34	0.29	0.34	49.2
11	T1	495	30	521	6.1	0.189	6.2	LOSA	5.4	40.1	0.34	0.29	0.34	54.4
12	R2	39	0	41	0.0	* 0.387	77.8	LOS E	2.8	19.9	1.00	0.74	1.00	25.3
Appr	oach	535	30	563	5.6	0.387	11.5	LOS B	5.4	40.1	0.39	0.32	0.39	50.2
Sout	hWest:	Ikkina R	d (SW)											
1	L2	54	1	57	1.9	0.056	5.1	LOSA	0.3	2.3	0.13	0.53	0.13	49.9
2	T1	3	0	3	0.0	0.275	63.3	LOS E	3.5	24.7	0.96	0.75	0.96	20.8
3	R2	101	0	106	0.0	0.275	67.8	LOS E	3.5	24.7	0.96	0.75	0.96	27.0
Appr	oach	158	1	166	0.6	0.275	46.3	LOS D	3.5	24.7	0.68	0.67	0.68	31.9
All Vehic	cles	2023	62	2129	3.1	0.411	9.9	LOSA	5.4	40.1	0.28	0.30	0.28	50.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time	Dist. S	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd ((SW)									

Site: 5 [2026 PM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM.		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	300		VCII					KIII/II
4	L2	183	1	193	0.5	0.158	15.2	LOS B	4.9	34.4	0.41	0.69	0.41	44.1
5	T1	709	22	746	3.1	* 0.276	8.2	LOSA	9.2	66.4	0.40	0.35	0.40	52.9
6	R2	1	0	1	0.0	* 0.002	9.3	LOSA	0.0	0.1	0.30	0.59	0.30	46.2
Appr	oach	893	23	940	2.6	0.276	9.6	LOSA	9.2	66.4	0.40	0.42	0.40	50.8
North	nEast:	Cultural (Centre A	ccess (NE	E)									
7	L2	1	0	1	0.0	0.281	96.2	LOS F	0.3	2.4	1.00	0.61	1.00	17.4
8	T1	1	0	1	0.0	* 0.281	91.6	LOS F	0.3	2.4	1.00	0.61	1.00	16.8
9	R2	1	1	1	100.0	0.281	97.0	LOS F	0.3	2.4	1.00	0.61	1.00	16.7
Appr	oach	3	1	3	33.3	0.281	94.9	LOS F	0.3	2.4	1.00	0.61	1.00	17.0
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	2	0	2	0.0	0.287	6.1	LOSA	0.8	5.9	0.03	0.03	0.03	55.7
11	T1	809	28	852	3.5	0.287	0.5	LOS A	0.8	5.9	0.03	0.03	0.03	59.5
12	R2	36	3	38	8.3	0.275	73.6	LOS E	2.5	19.0	0.98	0.74	0.98	26.0
Appr	oach	847	31	892	3.7	0.287	3.6	LOSA	2.5	19.0	0.07	0.06	0.07	56.4
Sout	hWest	: Ikkina R	d (SW)											
1	L2	40	1	42	2.5	0.092	48.6	LOS D	2.3	16.5	0.81	0.67	0.81	31.4
2	T1	1	0	1	0.0	* 0.287	65.5	LOS E	3.2	22.7	0.97	0.74	0.97	20.4
3	R2	93	0	98	0.0	0.287	70.1	LOS E	3.2	22.7	0.97	0.74	0.97	26.5
Appr	oach	134	1	141	0.7	0.287	63.6	LOS E	3.2	22.7	0.92	0.72	0.92	27.8
All Vehic	cles	1877	56	1976	3.0	0.287	10.9	LOS B	9.2	66.4	0.29	0.28	0.29	50.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

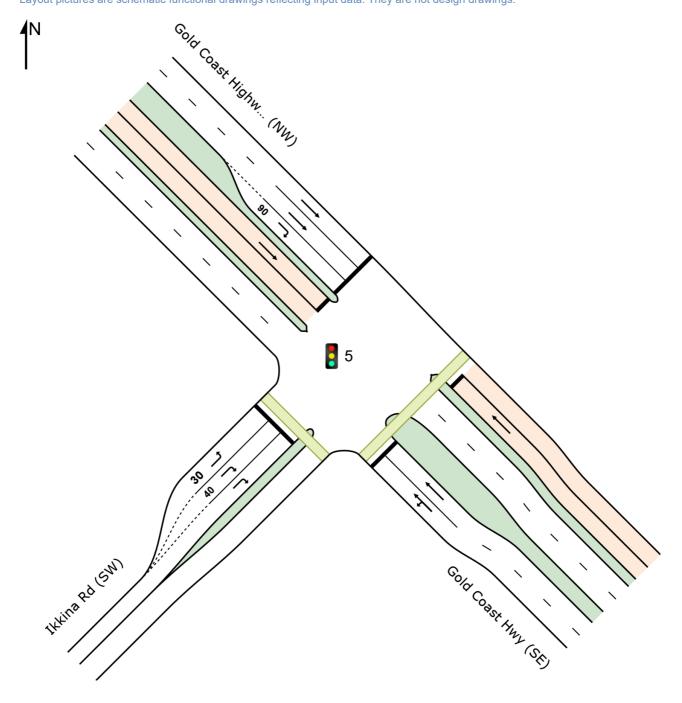
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

SITE LAYOUT


Site: 5 [2041 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2041 AM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	292	0	307	0.0	* 0.545	15.8	LOS B	17.7	125.1	0.43	0.55	0.43	45.4
5	T1	1001	30	1054	3.0	0.545	8.0	LOSA	17.7	125.1	0.33	0.36	0.33	52.5
Appr	oach	1293	30	1361	2.3	0.545	9.8	LOSA	17.7	125.1	0.36	0.40	0.36	50.6
North	West:	Gold Coa	ast High	way (NW)										
11	T1	235	15	247	6.4	0.120	20.1	LOS C	4.1	29.6	0.56	0.46	0.56	45.5
12	R2	44	5	46	11.4	* 0.151	58.2	LOS E	2.7	20.6	0.88	0.74	0.88	29.3
Appr	oach	279	20	294	7.2	0.151	26.1	LOS C	4.1	29.6	0.61	0.50	0.61	41.6
South	nWest:	Ikkina R	d (SW)											
1	L2	28	0	29	0.0	0.058	45.3	LOS D	1.5	10.4	0.78	0.70	0.78	32.0
3	R2	73	0	77	0.0	* 0.483	80.1	LOS F	2.8	19.3	1.00	0.73	1.00	24.6
Appr	oach	101	0	106	0.0	0.483	70.5	LOS E	2.8	19.3	0.94	0.72	0.94	26.3
All Vehic	cles	1673	50	1761	3.0	0.545	16.2	LOS B	17.7	125.1	0.43	0.44	0.43	46.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	
SouthEast: Go	ped/h old Coas	ped/h t Hwy (S	sec E)		ped	m			sec	m	m/sec
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 5 [2041 PM (Site Folder: Option 3Aiii)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	hEast:	Gold Coa	ast Hwy ((SE)										
4	L2	145	0	153	0.0	0.276	18.2	LOS B	8.0	56.6	0.43	0.54	0.43	44.0
5	T1	446	21	469	4.7	0.302	11.6	LOS B	8.0	56.6	0.35	0.36	0.35	50.2
Appr	oach	591	21	622	3.6	0.302	13.2	LOS B	8.0	56.6	0.37	0.40	0.37	48.2
North	nWest:	Gold Co	ast Highv	way (NW)										
11	T1	568	17	598	3.0	* 0.302	22.0	LOS C	11.4	81.2	0.63	0.54	0.63	44.3
12	R2	35	1	37	2.9	* 0.113	57.5	LOS E	2.1	15.1	0.87	0.72	0.87	29.5
Appr	oach	603	18	635	3.0	0.302	24.0	LOS C	11.4	81.2	0.64	0.55	0.64	42.9
South	hWest	: Ikkina R	d (SW)											
1	L2	29	2	31	6.9	0.051	38.5	LOS D	1.4	10.3	0.71	0.69	0.71	34.0
3	R2	112	0	118	0.0	* 0.296	68.1	LOS E	3.8	26.6	0.96	0.75	0.96	26.8
Appr	oach	141	2	148	1.4	0.296	62.0	LOS E	3.8	26.6	0.91	0.74	0.91	28.0
All Vehic	cles	1335	41	1405	3.1	0.302	23.2	LOS C	11.4	81.2	0.55	0.50	0.55	42.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

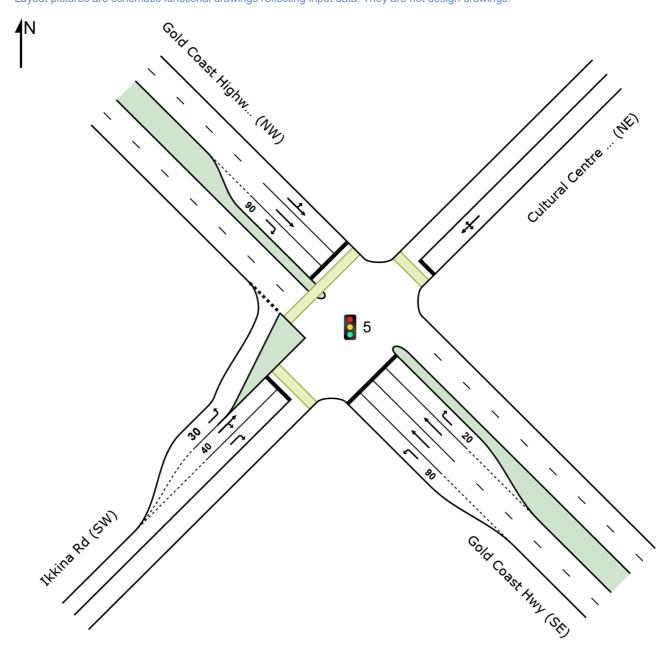
* Critical Movement (Signal Timing)

Pedestrian I	/loveme	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
SouthEast: Go	old Coas	t Hwy (S	E)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

SITE LAYOUT


Site: 5 [2021 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2021 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa		(SE)										
4	L2	680	0	716	0.0	* 0.500	9.2	LOSA	12.2	85.6	0.40	0.71	0.40	47.6
5	T1	1353	49	1424	3.6	* 0.529	2.7	LOSA	6.3	45.3	0.14	0.13	0.14	57.5
6	R2	1	0	1	0.0	0.003	11.1	LOS B	0.0	0.1	0.36	0.59	0.36	44.6
Appro	oach	2034	49	2141	2.4	0.529	4.9	LOSA	12.2	85.6	0.23	0.32	0.23	53.7
North	East:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
8	T1	1	0	1	0.0	* 0.343	83.8	LOS F	0.7	5.1	1.00	0.66	1.00	17.7
9	R2	7	0	7	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
Appro	oach	9	0	9	0.0	0.343	87.9	LOS F	0.7	5.1	1.00	0.66	1.00	18.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	0.331	12.7	LOS B	11.0	80.0	0.39	0.35	0.39	48.3
11	T1	873	43	919	4.9	0.331	7.1	LOSA	11.0	80.0	0.39	0.35	0.39	53.7
12	R2	30	1	32	3.3	* 0.487	83.0	LOS F	2.3	16.5	1.00	0.72	1.00	24.4
Appro	oach	906	44	954	4.9	0.487	9.7	LOSA	11.0	80.0	0.41	0.36	0.41	51.6
South	nWest	: Ikkina R	d (SW)											
1	L2	47	2	49	4.3	0.057	5.4	LOSA	0.3	2.4	0.15	0.54	0.15	49.7
2	T1	1	0	1	0.0	0.528	64.6	LOS E	7.4	51.9	0.99	0.79	0.99	20.6
3	R2	212	0	223	0.0	0.528	69.1	LOS E	7.4	51.9	0.99	0.79	0.99	26.7
Appro	oach	260	2	274	8.0	0.528	57.6	LOS E	7.4	51.9	0.84	0.74	0.84	29.1
All Vehic	eles	3209	95	3378	3.0	0.529	10.7	LOS B	12.2	85.6	0.33	0.37	0.33	49.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2021 PM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	358	0	377	0.0	0.406	28.7	LOS C	15.9	111.0	0.67	0.78	0.67	37.9
5	T1	890	27	937	3.0	0.447	20.4	LOS C	18.9	136.0	0.65	0.58	0.65	45.0
6	R2	1	0	1	0.0	* 0.007	17.8	LOS B	0.0	0.2	0.52	0.59	0.52	39.7
Appro	oach	1249	27	1315	2.2	0.447	22.8	LOS C	18.9	136.0	0.66	0.64	0.66	42.7
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
8	T1	1	0	1	0.0	* 0.379	90.1	LOS F	0.4	3.0	1.00	0.63	1.03	17.0
9	R2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
Appro	oach	5	0	5	0.0	0.379	93.7	LOS F	0.4	3.0	1.00	0.63	1.03	17.4
North	West:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	* 0.606	15.0	LOS B	17.5	124.3	0.39	0.36	0.39	46.2
11	T1	1377	22	1449	1.6	0.606	9.5	LOSA	17.5	124.3	0.39	0.36	0.39	51.9
12	R2	41	0	43	0.0	0.296	73.4	LOS E	2.9	20.2	0.98	0.74	0.98	26.1
Appro	oach	1421	22	1496	1.5	0.606	11.3	LOS B	17.5	124.3	0.41	0.37	0.41	50.5
South	nWest	: Ikkina R	d (SW)											
1	L2	36	0	38	0.0	0.050	31.6	LOS C	1.6	11.3	0.64	0.63	0.64	36.8
2	T1	3	0	3	0.0	* 0.604	49.4	LOS D	15.7	110.0	0.93	0.82	0.93	23.6
3	R2	454	0	478	0.0	0.604	53.3	LOS D	15.7	110.0	0.92	0.81	0.92	30.2
Appro	oach	493	0	519	0.0	0.604	51.7	LOS D	15.7	110.0	0.90	0.80	0.90	30.5
All Vehic	cles	3168	49	3335	1.5	0.606	22.2	LOS C	18.9	136.0	0.58	0.54	0.58	42.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian N	Input	Dem.	Aver.		^\/ED^GE	BACK OF	Prop. Ef	factive	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE QUE		Que	Stop	Time		Speed
	ped/h	ped/h	sec		ped	m m		rtato	sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	739	0	778	0.0	* 0.524	8.6	LOSA	12.8	89.4	0.37	0.70	0.37	48.0
5	T1	1410	50	1484	3.5	* 0.540	1.9	LOSA	4.9	35.1	0.11	0.10	0.11	58.2
6	R2	4	0	4	0.0	0.012	11.0	LOS B	0.1	0.5	0.35	0.61	0.35	44.7
Appro	oach	2153	50	2266	2.3	0.540	4.2	LOSA	12.8	89.4	0.20	0.31	0.20	54.2
North	East:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.598	95.8	LOS F	0.7	4.9	1.00	0.69	1.25	17.6
8	T1	4	0	4	0.0	* 0.598	91.2	LOS F	0.7	4.9	1.00	0.69	1.25	17.0
9	R2	3	0	3	0.0	0.598	95.8	LOS F	0.7	4.9	1.00	0.69	1.25	17.6
Appro	oach	8	0	8	0.0	0.598	93.5	LOS F	0.7	4.9	1.00	0.69	1.25	17.3
North	West:	Gold Coa	ast High	way (NW)										
10	L2	6	1	6	16.7	0.346	12.6	LOS B	11.5	83.6	0.38	0.35	0.38	47.1
11	T1	918	44	966	4.8	0.346	6.9	LOSA	11.5	83.6	0.38	0.35	0.38	53.9
12	R2	24	4	25	16.7	* 0.533	86.0	LOS F	1.9	15.1	1.00	0.73	1.07	23.9
Appro	oach	948	49	998	5.2	0.533	8.9	LOSA	11.5	83.6	0.40	0.36	0.40	52.2
South	nWest	: Ikkina R	d (SW)											
1	L2	49	0	52	0.0	0.059	5.1	LOSA	0.3	2.1	0.14	0.54	0.14	50.0
2	T1	1	0	1	0.0	0.528	62.6	LOS E	8.0	56.3	0.98	0.79	0.98	20.9
3	R2	236	0	248	0.0	0.528	67.2	LOS E	8.2	57.6	0.98	0.79	0.98	27.1
Appro	oach	286	0	301	0.0	0.528	56.6	LOS E	8.2	57.6	0.84	0.75	0.84	29.4
All Vehic	eles	3395	99	3574	2.9	0.598	10.1	LOS B	12.8	89.4	0.31	0.36	0.31	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time	Dist. S	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd ((SW)									

Site: 5 [2024 PM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	412	0	434	0.0	0.419	24.4	LOS C	16.8	117.4	0.62	0.77	0.62	39.7
5	T1	901	20	948	2.2	0.408	15.6	LOS B	16.8	119.8	0.57	0.51	0.57	47.8
6	R2	2	0	2	0.0	* 0.014	13.8	LOS B	0.0	0.3	0.42	0.60	0.42	42.5
Appr	oach	1315	20	1384	1.5	0.419	18.4	LOS B	16.8	119.8	0.59	0.59	0.59	44.9
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
8	T1	1	0	1	0.0	* 0.532	91.0	LOS F	0.6	4.3	1.00	0.67	1.18	16.8
9	R2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.4
Appr	oach	7	0	7	0.0	0.532	94.9	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
North	West:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	* 0.602	10.5	LOS B	12.0	85.1	0.25	0.23	0.25	50.6
11	T1	1493	29	1572	1.9	0.602	4.9	LOSA	12.0	85.1	0.25	0.23	0.25	55.5
12	R2	51	5	54	9.8	0.394	74.5	LOS E	3.6	27.6	0.99	0.75	0.99	25.8
Appr	oach	1545	34	1626	2.2	0.602	7.2	LOSA	12.0	85.1	0.27	0.25	0.27	53.5
South	nWest	: Ikkina R	d (SW)											
1	L2	30	0	32	0.0	0.029	6.9	LOSA	0.4	2.6	0.23	0.56	0.23	48.8
2	T1	2	0	2	0.0	* 0.604	57.2	LOS E	11.9	83.6	0.97	0.81	0.97	22.0
3	R2	348	0	366	0.0	0.604	61.6	LOS E	11.9	83.6	0.96	0.81	0.96	28.2
Appr	oach	380	0	400	0.0	0.604	57.3	LOS E	11.9	83.6	0.91	0.79	0.91	29.2
All Vehic	cles	3247	54	3418	1.7	0.604	17.8	LOS B	16.8	119.8	0.47	0.45	0.48	45.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA		Prop. I	Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	000		[Veh. veh	Dist]		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/C	sec		ven	m				KIII/II
4	L2	278	0	293	0.0	* 0.204	8.2	LOSA	3.6	25.4	0.29	0.66	0.29	48.2
5	T1	1042	31	1097	3.0	* 0.405	2.4	LOSA	3.9	28.2	0.12	0.11	0.12	57.8
6	R2	1	0	1	0.0	0.002	9.9	LOSA	0.0	0.1	0.31	0.58	0.31	45.7
Appr	oach	1321	31	1391	2.3	0.405	3.6	LOSA	3.9	28.2	0.15	0.22	0.15	55.5
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.341	88.4	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.341	83.8	LOS F	0.7	5.1	1.00	0.65	1.00	17.8
9	R2	6	0	6	0.0	0.341	88.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
Appr	oach	9	0	9	0.0	0.341	87.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.2
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	0.189	11.8	LOS B	5.4	40.1	0.34	0.29	0.34	49.2
11	T1	495	30	521	6.1	0.189	6.2	LOSA	5.4	40.1	0.34	0.29	0.34	54.4
12	R2	27	0	28	0.0	* 0.357	80.5	LOS F	2.0	14.1	1.00	0.72	1.00	24.8
Appr	oach	523	30	551	5.7	0.357	10.1	LOS B	5.4	40.1	0.37	0.31	0.37	51.3
Sout	hWest:	: Ikkina R	d (SW)											
1	L2	56	1	59	1.8	0.058	5.1	LOSA	0.3	2.1	0.13	0.53	0.13	50.0
2	T1	3	0	3	0.0	0.258	62.1	LOS E	3.5	24.4	0.95	0.75	0.95	21.1
3	R2	101	0	106	0.0	0.258	66.6	LOS E	3.5	24.4	0.95	0.75	0.95	27.2
Appr	oach	160	1	168	0.6	0.258	45.0	LOS D	3.5	24.4	0.66	0.67	0.66	32.3
All Vehic	cles	2013	62	2119	3.1	0.405	8.9	LOSA	5.4	40.1	0.25	0.28	0.25	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	y (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Iki	kina Rd	(SW)									

Site: 5 [2026 PM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM.		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	hEast:	Gold Coa			70	V/ 0	300		VOI1					KITI/IT
4	L2	171	1	180	0.6	0.148	15.1	LOS B	4.5	31.9	0.40	0.68	0.40	44.2
5	T1	721	22	759	3.1	* 0.281	8.2	LOS A	9.4	67.7	0.40	0.35	0.40	52.9
6	R2	1	0	1	0.0	* 0.002	9.3	LOS A	0.0	0.1	0.30	0.59	0.30	46.2
Appr	oach	893	23	940	2.6	0.281	9.5	LOSA	9.4	67.7	0.40	0.42	0.40	51.0
North	nEast:	Cultural C	Centre A	ccess (NE	E)									
7	L2	1	0	1	0.0	0.281	96.2	LOS F	0.3	2.4	1.00	0.61	1.00	17.4
8	T1	1	0	1	0.0	* 0.281	91.6	LOS F	0.3	2.4	1.00	0.61	1.00	16.8
9	R2	1	1	1	100.0	0.281	97.0	LOS F	0.3	2.4	1.00	0.61	1.00	16.7
Appr	oach	3	1	3	33.3	0.281	94.9	LOS F	0.3	2.4	1.00	0.61	1.00	17.0
North	nWest:	Gold Coa	ast High	way (NW)										
10	L2	2	0	2	0.0	0.288	6.1	LOSA	8.0	6.0	0.03	0.03	0.03	55.7
11	T1	810	28	853	3.5	0.288	0.5	LOS A	8.0	6.0	0.03	0.03	0.03	59.5
12	R2	36	3	38	8.3	0.275	73.6	LOS E	2.5	19.0	0.98	0.74	0.98	26.0
Appr	oach	848	31	893	3.7	0.288	3.6	LOSA	2.5	19.0	0.07	0.06	0.07	56.4
Sout	hWest	: Ikkina R	d (SW)											
1	L2	45	1	47	2.2	0.104	48.8	LOS D	2.6	18.5	0.81	0.68	0.81	31.4
2	T1	1	0	1	0.0	* 0.290	65.6	LOS E	3.3	22.9	0.97	0.75	0.97	20.4
3	R2	94	0	99	0.0	0.290	70.1	LOS E	3.3	22.9	0.97	0.75	0.97	26.5
Appr	oach	140	1	147	0.7	0.290	63.2	LOS E	3.3	22.9	0.92	0.72	0.92	27.9
All Vehic	cles	1884	56	1983	3.0	0.290	11.0	LOS B	9.4	67.7	0.29	0.28	0.29	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

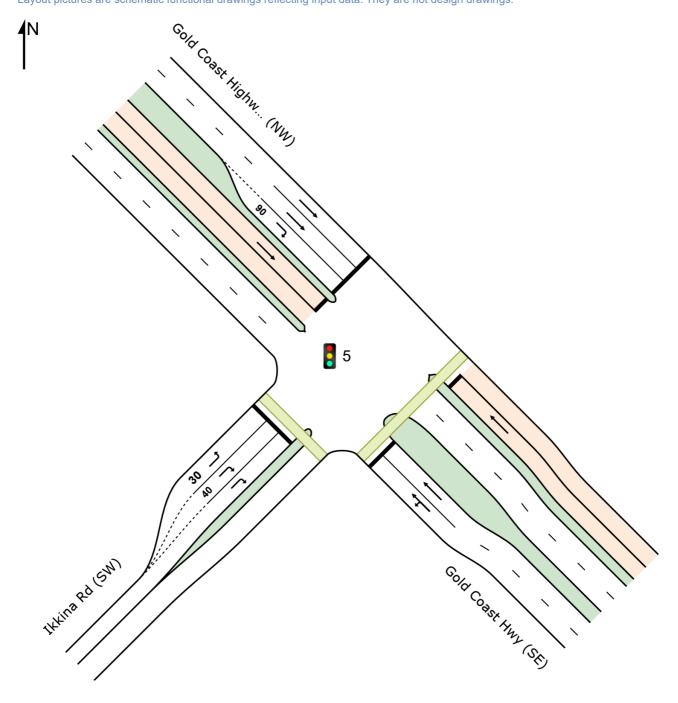
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Moveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE)								
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

SITE LAYOUT


Site: 5 [2041 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2041 AM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn		JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	hEast:	Gold Coa	ast Hwy	(SE)										
4	L2	294	0	309	0.0	* 0.549	15.8	LOS B	17.9	126.5	0.43	0.55	0.43	45.4
5	T1	1008	30	1061	3.0	0.549	8.0	LOSA	17.9	126.5	0.33	0.36	0.33	52.5
Appr	oach	1302	30	1371	2.3	0.549	9.8	LOSA	17.9	126.5	0.36	0.40	0.36	50.6
North	nWest:	Gold Co	ast High	way (NW)										
11	T1	237	15	249	6.3	0.121	20.1	LOS C	4.2	29.9	0.56	0.46	0.56	45.5
12	R2	38	5	40	13.2	* 0.132	58.0	LOS E	2.3	18.0	0.88	0.73	0.88	29.4
Appr	oach	275	20	289	7.3	0.132	25.3	LOS C	4.2	29.9	0.61	0.49	0.61	42.0
South	hWest:	Ikkina R	d (SW)											
1	L2	31	0	33	0.0	0.064	45.4	LOS D	1.6	11.5	0.78	0.70	0.78	32.0
3	R2	73	0	77	0.0	* 0.483	80.1	LOS F	2.8	19.3	1.00	0.73	1.00	24.6
Appr	oach	104	0	109	0.0	0.483	69.8	LOS E	2.8	19.3	0.93	0.72	0.93	26.4
All Vehic	cles	1681	50	1769	3.0	0.549	16.1	LOS B	17.9	126.5	0.43	0.44	0.43	46.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
SouthEast: Go	old Coas	t Hwy (S	E)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 5 [2041 PM (Site Folder: Option 3Aiv)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy ((SE)										
4	L2	141	0	148	0.0	0.279	18.7	LOS B	8.1	57.7	0.43	0.54	0.43	43.8
5	T1	450	21	474	4.7	0.302	12.1	LOS B	8.1	57.7	0.36	0.37	0.36	49.9
Appr	oach	591	21	622	3.6	0.302	13.7	LOS B	8.1	57.7	0.38	0.41	0.38	48.0
North	West:	Gold Co	ast Highv	way (NW)										
11	T1	565	17	595	3.0	* 0.302	22.6	LOS C	11.5	81.9	0.63	0.55	0.63	44.0
12	R2	34	1	36	2.9	* 0.110	57.5	LOS E	2.0	14.7	0.87	0.72	0.87	29.5
Appr	oach	599	18	631	3.0	0.302	24.5	LOS C	11.5	81.9	0.65	0.56	0.65	42.6
South	nWest	: Ikkina R	d (SW)											
1	L2	29	2	31	6.9	0.050	37.7	LOS D	1.4	10.2	0.70	0.68	0.70	34.2
3	R2	116	0	122	0.0	* 0.288	66.9	LOS E	3.9	27.3	0.96	0.75	0.96	27.0
Appr	oach	145	2	153	1.4	0.288	61.1	LOS E	3.9	27.3	0.91	0.74	0.91	28.2
All Vehic	cles	1335	41	1405	3.1	0.302	23.7	LOS C	11.5	81.9	0.56	0.51	0.56	42.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

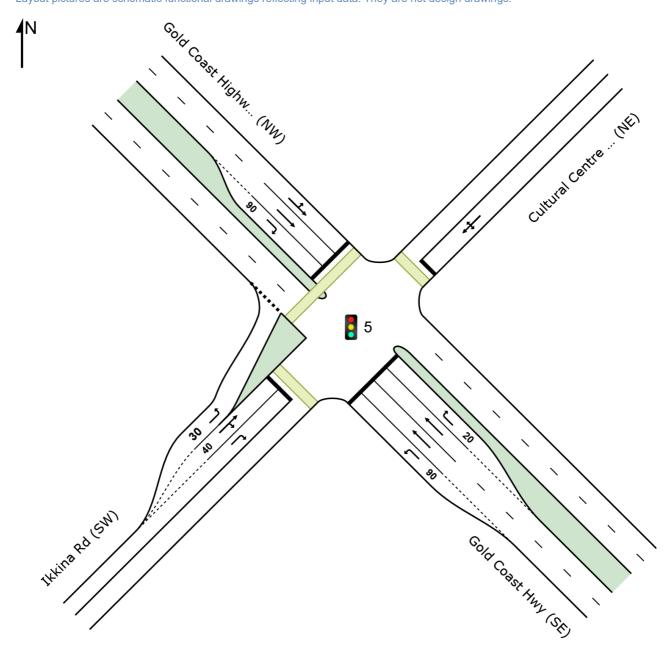
* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
SouthEast: Go	old Coas	t Hwy (S	E)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

SITE LAYOUT


Site: 5 [2021 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2021 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

venii	cle M	ovemen	t Perfo	rmance										
Mov	Turn	INP		DEMA		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa			70	V/C	300		VCII	- '''				KIII/II
4	L2	705	0	742	0.0	* 0.523	9.5	LOSA	13.6	95.0	0.42	0.72	0.42	47.4
5	T1	1334	49	1404	3.7	* 0.532	3.6	LOSA	7.8	56.6	0.18	0.17	0.18	56.7
6	R2	1	0	1	0.0	0.003	11.1	LOS B	0.0	0.1	0.36	0.59	0.36	44.6
Appro	oach	2040	49	2147	2.4	0.532	5.6	LOSA	13.6	95.0	0.27	0.36	0.27	53.1
North	East:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
8	T1	1	0	1	0.0	* 0.343	83.8	LOS F	0.7	5.1	1.00	0.66	1.00	17.7
9	R2	7	0	7	0.0	0.343	88.4	LOS F	0.7	5.1	1.00	0.66	1.00	18.3
Appro	oach	9	0	9	0.0	0.343	87.9	LOS F	0.7	5.1	1.00	0.66	1.00	18.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	3	0	3	0.0	0.334	13.4	LOS B	11.4	82.9	0.40	0.36	0.40	47.6
11	T1	862	43	907	5.0	0.334	7.9	LOS A	11.4	82.9	0.40	0.36	0.40	53.1
12	R2	33	1	35	3.0	* 0.446	81.1	LOS F	2.5	17.8	1.00	0.73	1.00	24.7
Appro	oach	898	44	945	4.9	0.446	10.6	LOS B	11.4	82.9	0.43	0.38	0.43	51.0
South	nWest:	Ikkina R	d (SW)											
1	L2	47	2	49	4.3	0.056	5.6	LOSA	0.4	2.8	0.17	0.54	0.17	49.5
2	T1	1	0	1	0.0	0.529	63.6	LOS E	7.8	54.5	0.99	0.79	0.99	20.7
3	R2	225	0	237	0.0	0.529	68.2	LOS E	7.8	54.8	0.99	0.79	0.99	26.9
Appro	oach	273	2	287	0.7	0.529	57.4	LOS E	7.8	54.8	0.84	0.75	0.84	29.2
All Vehic	les	3220	95	3389	3.0	0.532	11.6	LOS B	13.6	95.0	0.36	0.40	0.36	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2021 PM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% B <i>A</i> QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	367	0	386	0.0	0.416	28.9	LOS C	16.4	114.5	0.68	0.78	0.68	37.9
5	T1	891	27	938	3.0	0.448	20.4	LOS C	19.0	136.2	0.65	0.58	0.65	45.0
6	R2	1	0	1	0.0	* 0.007	18.0	LOS B	0.0	0.2	0.52	0.59	0.52	39.6
Appr	oach	1259	27	1325	2.1	0.448	22.9	LOS C	19.0	136.2	0.66	0.64	0.66	42.7
North	East:	Cultural (Centre A	ccess (NE)									
7	L2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
8	T1	1	0	1	0.0	* 0.379	90.1	LOS F	0.4	3.0	1.00	0.63	1.03	17.0
9	R2	2	0	2	0.0	0.379	94.6	LOS F	0.4	3.0	1.00	0.63	1.03	17.5
Appr	oach	5	0	5	0.0	0.379	93.7	LOS F	0.4	3.0	1.00	0.63	1.03	17.4
North	West:	Gold Co	ast High	way (NW)										
10	L2	4	0	4	0.0	* 0.617	15.1	LOS B	18.1	128.7	0.40	0.37	0.40	46.1
11	T1	1400	22	1474	1.6	0.617	9.6	LOS A	18.1	128.7	0.40	0.37	0.40	51.9
12	R2	40	0	42	0.0	0.289	73.4	LOS E	2.8	19.7	0.98	0.74	0.98	26.1
Appr	oach	1444	22	1520	1.5	0.617	11.3	LOS B	18.1	128.7	0.41	0.38	0.41	50.5
South	nWest	: Ikkina R	d (SW)											
1	L2	35	0	37	0.0	0.048	31.5	LOS C	1.6	11.0	0.64	0.63	0.64	36.8
2	T1	5	0	5	0.0	* 0.605	49.4	LOS D	15.8	110.5	0.93	0.82	0.93	23.6
3	R2	453	0	477	0.0	0.605	53.3	LOS D	15.8	110.5	0.92	0.81	0.92	30.2
Appr	oach	493	0	519	0.0	0.605	51.7	LOS D	15.8	110.5	0.90	0.80	0.90	30.5
All Vehic	cles	3201	49	3369	1.5	0.617	22.2	LOSC	19.0	136.2	0.59	0.54	0.59	43.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	795	0	837	0.0	* 0.590	9.9	LOSA	16.8	117.5	0.47	0.74	0.47	47.1
5	T1	1365	50	1437	3.7	* 0.596	8.1	LOSA	15.6	112.5	0.35	0.32	0.35	52.9
6	R2	4	0	4	0.0	0.014	14.4	LOS B	0.1	0.7	0.46	0.61	0.46	42.1
Appro	oach	2164	50	2278	2.3	0.596	8.8	LOSA	16.8	117.5	0.39	0.47	0.39	50.6
North	nEast:	Cultural C	Centre A	ccess (NE	.)									
7	L2	1	0	1	0.0	0.303	88.1	LOS F	0.6	4.5	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.303	83.5	LOS F	0.6	4.5	1.00	0.65	1.00	17.8
9	R2	5	0	5	0.0	0.303	88.1	LOS F	0.6	4.5	1.00	0.65	1.00	18.4
Appro	oach	8	0	8	0.0	0.303	87.0	LOS F	0.6	4.5	1.00	0.65	1.00	18.3
North	West:	Gold Coa	ast High	way (NW)										
10	L2	6	1	6	16.7	0.396	17.4	LOS B	15.4	111.9	0.50	0.45	0.50	43.1
11	T1	939	44	988	4.7	0.396	11.7	LOS B	15.4	112.0	0.50	0.45	0.50	50.3
12	R2	37	4	39	10.8	* 0.527	82.0	LOS F	2.8	21.5	1.00	0.74	1.02	24.6
Appro	oach	982	49	1034	5.0	0.527	14.4	LOS B	15.4	112.0	0.52	0.46	0.52	48.4
South	nWest	: Ikkina R	d (SW)											
1	L2	45	0	47	0.0	0.051	6.8	LOSA	0.6	3.9	0.23	0.56	0.23	48.9
2	T1	1	0	1	0.0	0.347	54.6	LOS D	6.9	48.6	0.92	0.78	0.92	22.5
3	R2	218	0	229	0.0	0.347	59.1	LOS E	6.9	48.6	0.92	0.78	0.92	28.8
Appro	oach	264	0	278	0.0	0.347	50.2	LOS D	6.9	48.6	0.80	0.74	0.80	30.9
All Vehic	cles	3418	99	3598	2.9	0.596	13.8	LOS B	16.8	117.5	0.46	0.49	0.46	47.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2024 PM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	394	0	415	0.0	0.411	25.4	LOS C	16.3	114.4	0.63	0.77	0.63	39.3
5	T1	917	20	965	2.2	0.425	16.8	LOS B	17.8	127.1	0.59	0.53	0.59	47.0
6	R2	2	0	2	0.0	* 0.014	14.8	LOS B	0.1	0.4	0.45	0.60	0.45	41.7
Appro	oach	1313	20	1382	1.5	0.425	19.4	LOS B	17.8	127.1	0.61	0.60	0.61	44.4
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
8	T1	1	0	1	0.0	* 0.532	91.0	LOS F	0.6	4.3	1.00	0.67	1.18	16.8
9	R2	3	0	3	0.0	0.532	95.6	LOS F	0.6	4.3	1.00	0.67	1.18	17.4
Appro	oach	7	0	7	0.0	0.532	94.9	LOS F	0.6	4.3	1.00	0.67	1.18	17.3
North	West:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	* 0.609	11.6	LOS B	13.8	98.5	0.29	0.27	0.29	49.5
11	T1	1478	29	1556	2.0	0.609	6.0	LOSA	13.8	98.5	0.29	0.27	0.29	54.6
12	R2	51	5	54	9.8	0.394	74.5	LOS E	3.6	27.6	0.99	0.75	0.99	25.8
Appro	oach	1530	34	1611	2.2	0.609	8.3	LOSA	13.8	98.5	0.31	0.28	0.31	52.7
South	nWest	: Ikkina R	d (SW)											
1	L2	36	0	38	0.0	0.035	7.1	LOSA	0.5	3.3	0.24	0.56	0.24	48.7
2	T1	3	0	3	0.0	* 0.611	55.6	LOS E	12.7	89.2	0.96	0.82	0.96	22.3
3	R2	370	0	389	0.0	0.611	59.9	LOS E	12.7	89.2	0.96	0.81	0.96	28.6
Appro	oach	409	0	431	0.0	0.611	55.2	LOS E	12.7	89.2	0.89	0.79	0.89	29.6
All Vehic	cles	3259	54	3431	1.7	0.611	18.8	LOS B	17.8	127.1	0.50	0.48	0.50	44.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m '			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

Site: 5 [2026 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	281	0	296	0.0	* 0.208	8.4	LOSA	3.8	26.9	0.30	0.66	0.30	48.1
5	T1	1039	31	1094	3.0	* 0.413	3.2	LOSA	5.0	36.1	0.15	0.13	0.15	57.0
6	R2	1	0	1	0.0	0.002	10.7	LOS B	0.0	0.1	0.32	0.58	0.32	45.0
Appro	oach	1321	31	1391	2.3	0.413	4.3	LOSA	5.0	36.1	0.18	0.25	0.18	54.9
North	nEast:	Cultural C	Centre A	ccess (NE)									
7	L2	1	0	1	0.0	0.341	88.4	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
8	T1	2	0	2	0.0	* 0.341	83.8	LOS F	0.7	5.1	1.00	0.65	1.00	17.8
9	R2	6	0	6	0.0	0.341	88.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.4
Appro	oach	9	0	9	0.0	0.341	87.3	LOS F	0.7	5.1	1.00	0.65	1.00	18.2
North	West:	Gold Coa	ast High	way (NW)										
10	L2	1	0	1	0.0	0.191	12.1	LOS B	5.6	41.2	0.35	0.30	0.35	48.9
11	T1	495	30	521	6.1	0.191	6.6	LOSA	5.6	41.2	0.35	0.30	0.35	54.2
12	R2	30	0	32	0.0	* 0.397	80.7	LOS F	2.2	15.7	1.00	0.72	1.00	24.8
Appro	oach	526	30	554	5.7	0.397	10.8	LOS B	5.6	41.2	0.38	0.32	0.38	50.7
South	nWest	: Ikkina R	d (SW)											
1	L2	55	1	58	1.8	0.057	5.1	LOSA	0.3	2.3	0.13	0.53	0.13	49.9
2	T1	3	0	3	0.0	0.242	60.9	LOS E	3.4	24.1	0.94	0.74	0.94	21.3
3	R2	101	0	106	0.0	0.242	65.5	LOS E	3.4	24.1	0.94	0.75	0.94	27.4
Appro	oach	159	1	167	0.6	0.242	44.5	LOS D	3.4	24.1	0.66	0.67	0.66	32.4
All Vehic	cles	2015	62	2121	3.1	0.413	9.5	LOSA	5.6	41.2	0.28	0.30	0.28	50.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time	Dist. S	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd ((SW)									

Site: 5 [2026 PM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	179	1	188	0.6	0.155	15.1	LOS B	4.8	33.6	0.41	0.69	0.41	44.2
5	T1	713	22	751	3.1	* 0.278	8.2	LOSA	9.3	66.8	0.40	0.35	0.40	52.9
6	R2	1	0	1	0.0	* 0.002	9.3	LOS A	0.0	0.1	0.30	0.59	0.30	46.1
Appro	oach	893	23	940	2.6	0.278	9.6	LOSA	9.3	66.8	0.40	0.42	0.40	50.9
North	East:	Cultural (Centre A	ccess (NE	i)									
7	L2	1	0	1	0.0	0.281	96.2	LOS F	0.3	2.4	1.00	0.61	1.00	17.4
8	T1	1	0	1	0.0	* 0.281	91.6	LOS F	0.3	2.4	1.00	0.61	1.00	16.8
9	R2	1	1	1	100.0	0.281	97.0	LOS F	0.3	2.4	1.00	0.61	1.00	16.7
Appro	oach	3	1	3	33.3	0.281	94.9	LOS F	0.3	2.4	1.00	0.61	1.00	17.0
North	West:	Gold Co	ast High	way (NW)										
10	L2	2	0	2	0.0	0.288	6.1	LOSA	8.0	6.0	0.03	0.03	0.03	55.7
11	T1	812	28	855	3.4	0.288	0.5	LOS A	8.0	6.0	0.03	0.03	0.03	59.5
12	R2	37	3	39	8.1	0.282	73.6	LOS E	2.6	19.5	0.98	0.74	0.98	26.0
Appro	oach	851	31	896	3.6	0.288	3.7	LOSA	2.6	19.5	0.07	0.06	0.07	56.3
South	nWest	: Ikkina R	d (SW)											
1	L2	41	1	43	2.4	0.095	48.6	LOS D	2.4	16.9	0.81	0.67	0.81	31.4
2	T1	1	0	1	0.0	* 0.284	65.5	LOS E	3.2	22.4	0.97	0.74	0.97	20.4
3	R2	92	0	97	0.0	0.284	70.0	LOS E	3.2	22.4	0.97	0.74	0.97	26.5
Appro	oach	134	1	141	0.7	0.284	63.5	LOS E	3.2	22.4	0.92	0.72	0.92	27.8
All Vehic	eles	1881	56	1980	3.0	0.288	10.9	LOS B	9.3	66.8	0.29	0.28	0.29	50.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

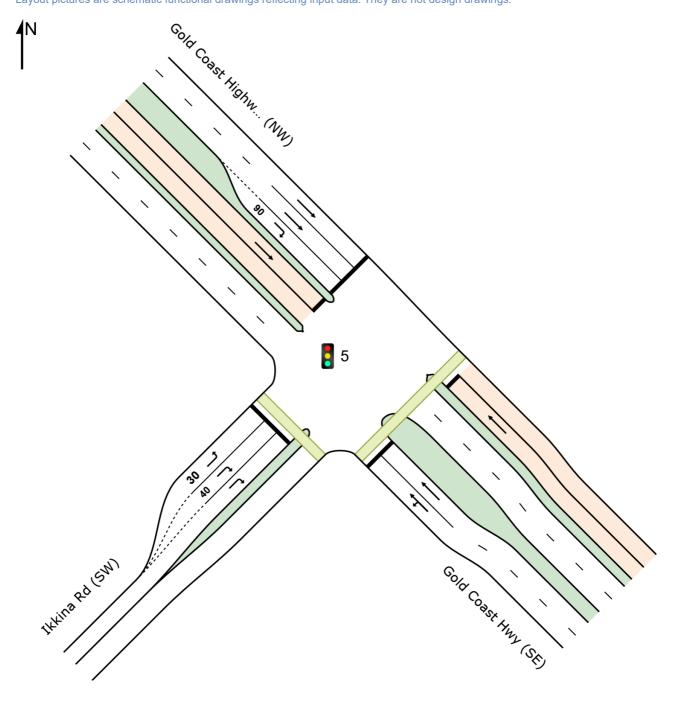
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	٧ol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
NorthEast: Cu	Itural Ce	ntre Acc	ess (NE))							
P3 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	225.7	210.0	0.93
NorthWest: Go	old Coas	t Highwa	ay (NW)								
P4 Full	20	21	64.2	LOS F	0.1	0.1	0.96	0.96	234.4	221.3	0.94
SouthWest: Ik	kina Rd	(SW)									

SITE LAYOUT


Site: 5 [2041 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 5 [2041 AM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLL	IMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	nEast:	Gold Coa	ast Hwy	(SE)										
4	L2	292	0	307	0.0	* 0.545	15.8	LOS B	17.7	125.1	0.43	0.55	0.43	45.4
5	T1	1001	30	1054	3.0	0.545	8.0	LOSA	17.7	125.1	0.33	0.36	0.33	52.5
Appr	oach	1293	30	1361	2.3	0.545	9.8	LOSA	17.7	125.1	0.36	0.40	0.36	50.6
North	West:	Gold Coa	ast High	way (NW)										
11	T1	234	15	246	6.4	0.120	20.1	LOS C	4.1	29.4	0.56	0.46	0.56	45.5
12	R2	44	5	46	11.4	* 0.151	58.2	LOS E	2.7	20.6	0.88	0.74	0.88	29.3
Appr	oach	278	20	293	7.2	0.151	26.1	LOS C	4.1	29.4	0.61	0.50	0.61	41.6
South	nWest:	Ikkina R	d (SW)											
1	L2	31	0	33	0.0	0.064	45.4	LOS D	1.6	11.5	0.78	0.70	0.78	32.0
3	R2	73	0	77	0.0	* 0.483	80.1	LOS F	2.8	19.3	1.00	0.73	1.00	24.6
Appr	oach	104	0	109	0.0	0.483	69.8	LOS E	2.8	19.3	0.93	0.72	0.93	26.4
All Vehic	cles	1675	50	1763	3.0	0.545	16.2	LOS B	17.7	125.1	0.43	0.44	0.43	46.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
SouthEast: Go	old Coas	t Hwy (S	E)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 5 [2041 PM (Site Folder: Option 3Av)]

Gold Coast Highway / Ikkina Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>I</i> QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Gold Coa	ast Hwy ((SE)										
4	L2	152	0	160	0.0	0.276	18.4	LOS B	8.1	57.3	0.43	0.55	0.43	43.8
5	T1	439	21	462	4.8	0.302	11.6	LOS B	8.1	57.3	0.35	0.36	0.35	50.2
Appro	oach	591	21	622	3.6	0.302	13.3	LOS B	8.1	57.3	0.37	0.41	0.37	48.1
North	West:	Gold Co	ast High	way (NW)										
11	T1	568	17	598	3.0	* 0.302	22.0	LOS C	11.4	81.2	0.63	0.54	0.63	44.3
12	R2	33	1	35	3.0	* 0.107	57.4	LOS E	2.0	14.3	0.87	0.72	0.87	29.5
Appro	oach	601	18	633	3.0	0.302	23.9	LOS C	11.4	81.2	0.64	0.55	0.64	43.0
South	nWest	Ikkina R	d (SW)											
1	L2	29	2	31	6.9	0.051	38.5	LOS D	1.4	10.3	0.71	0.69	0.71	34.0
3	R2	114	0	120	0.0	* 0.302	68.1	LOS E	3.9	27.1	0.96	0.75	0.96	26.8
Appro	oach	143	2	151	1.4	0.302	62.1	LOS E	3.9	27.1	0.91	0.74	0.91	28.0
All Vehic	les	1335	41	1405	3.1	0.302	23.3	LOS C	11.4	81.2	0.55	0.51	0.55	42.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

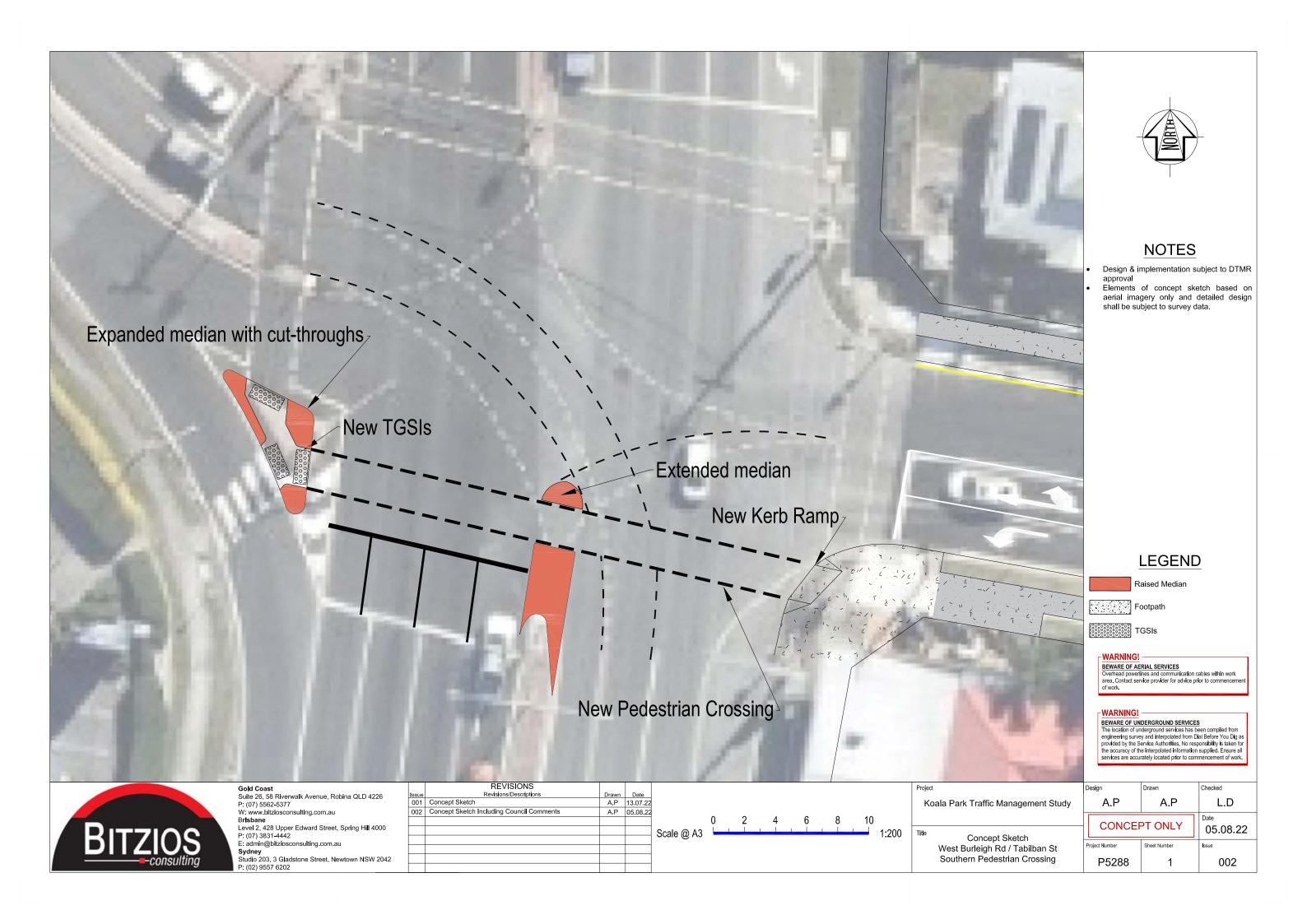
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	
SouthEast: Go	ped/h old Coas	ped/h t Hwy (S	sec E)		ped	m			sec	m	m/sec
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	241.8	230.8	0.95
SouthWest: Ik	kina Rd	(SW)									
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.8	219.1	0.94
All Pedestrians	100	105	64.3	LOS F	0.2	0.2	0.96	0.96	237.3	225.0	0.95


Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Appendix G: Preferred Option Concept Design Plans

NOTES

Roadwork underway at time of aerial imagery and therefore not representative of road conditions following completion of Tabilban Street renewal project

-WARNING! -

DEWARE OF AERIAL SERVICES

Overhead powerlines and communication cables within work area. Contact service provider for advice prior to commenceme of work.

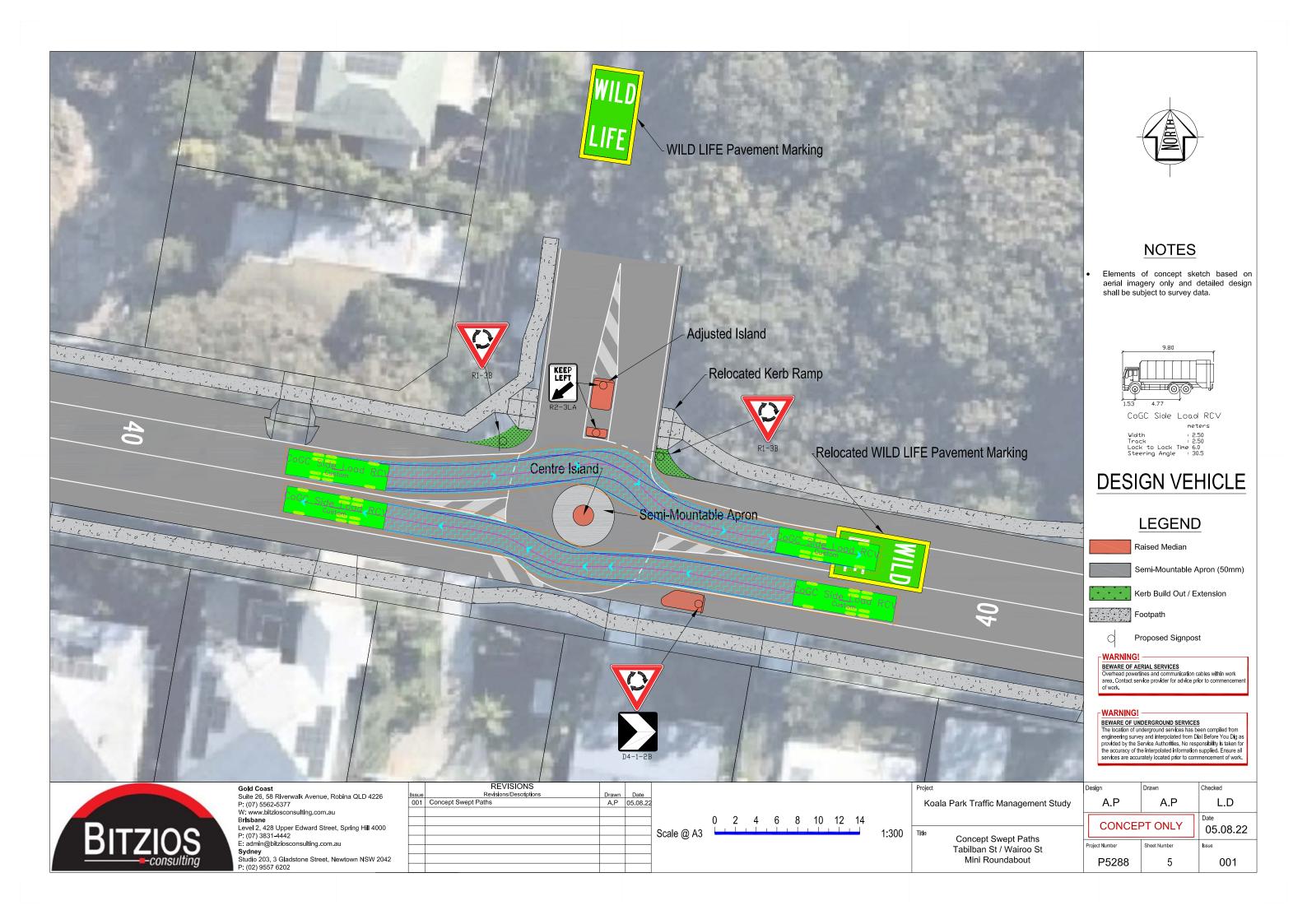
-WARNING! -

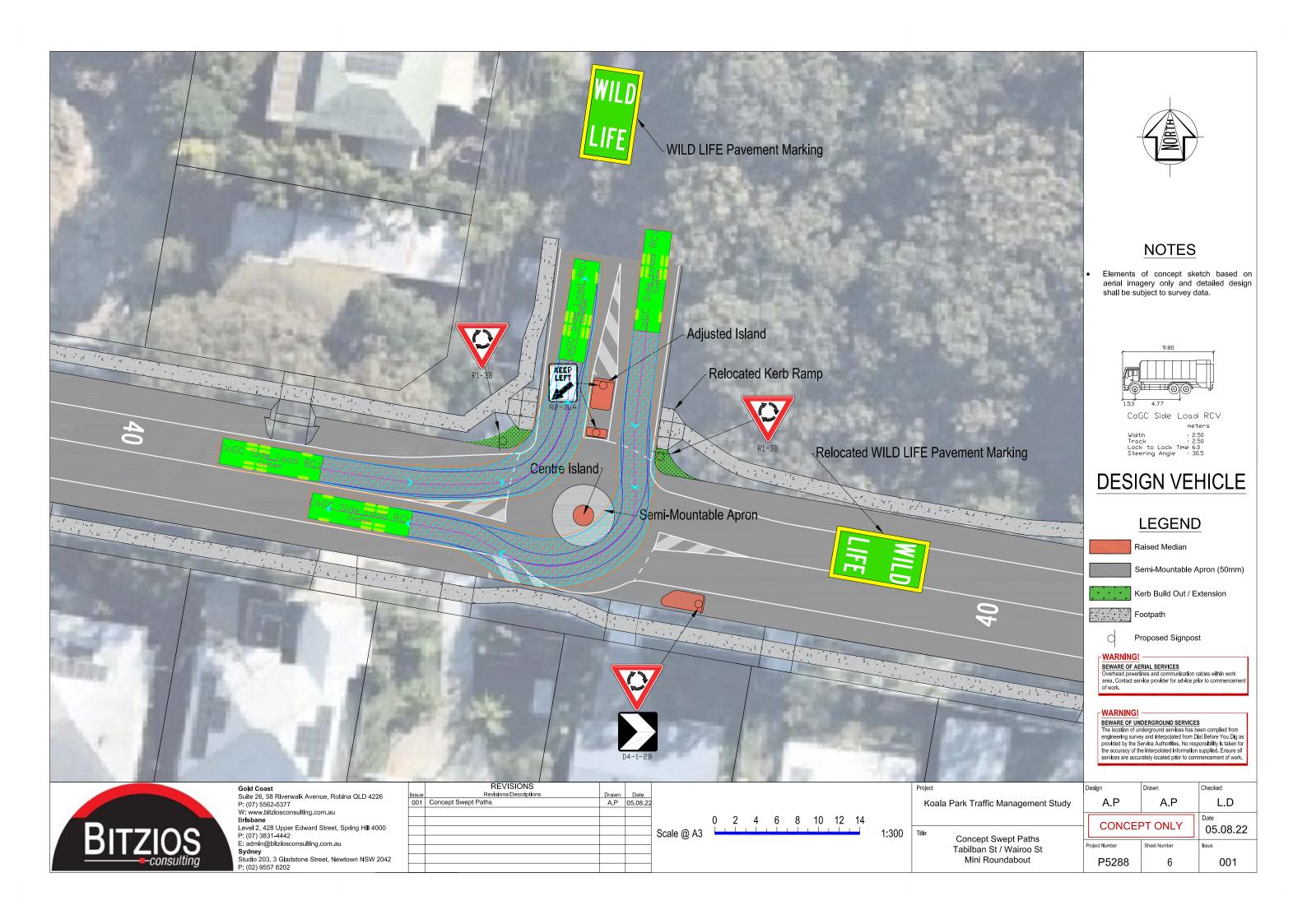
BEWARE OF UNDERGROUND SERVICES

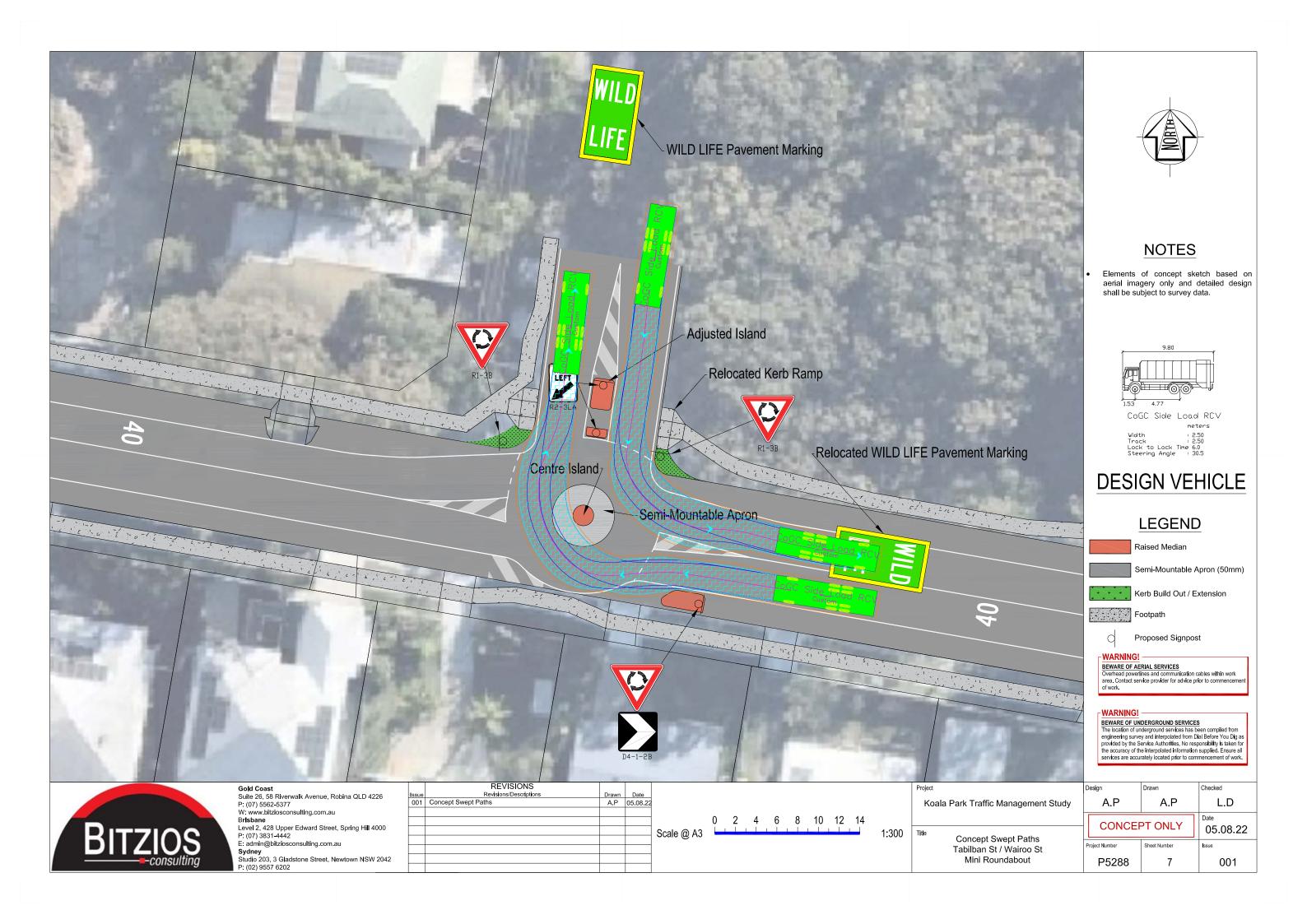
The location of underground services has been compiled from engineering survey and interpolated from Dial Before You Dig as provided by the Service Authorities. No responsibility is taken for the accuracy of the interpolated information supplied. Ensure all services are accurately located prior to commencement of work.

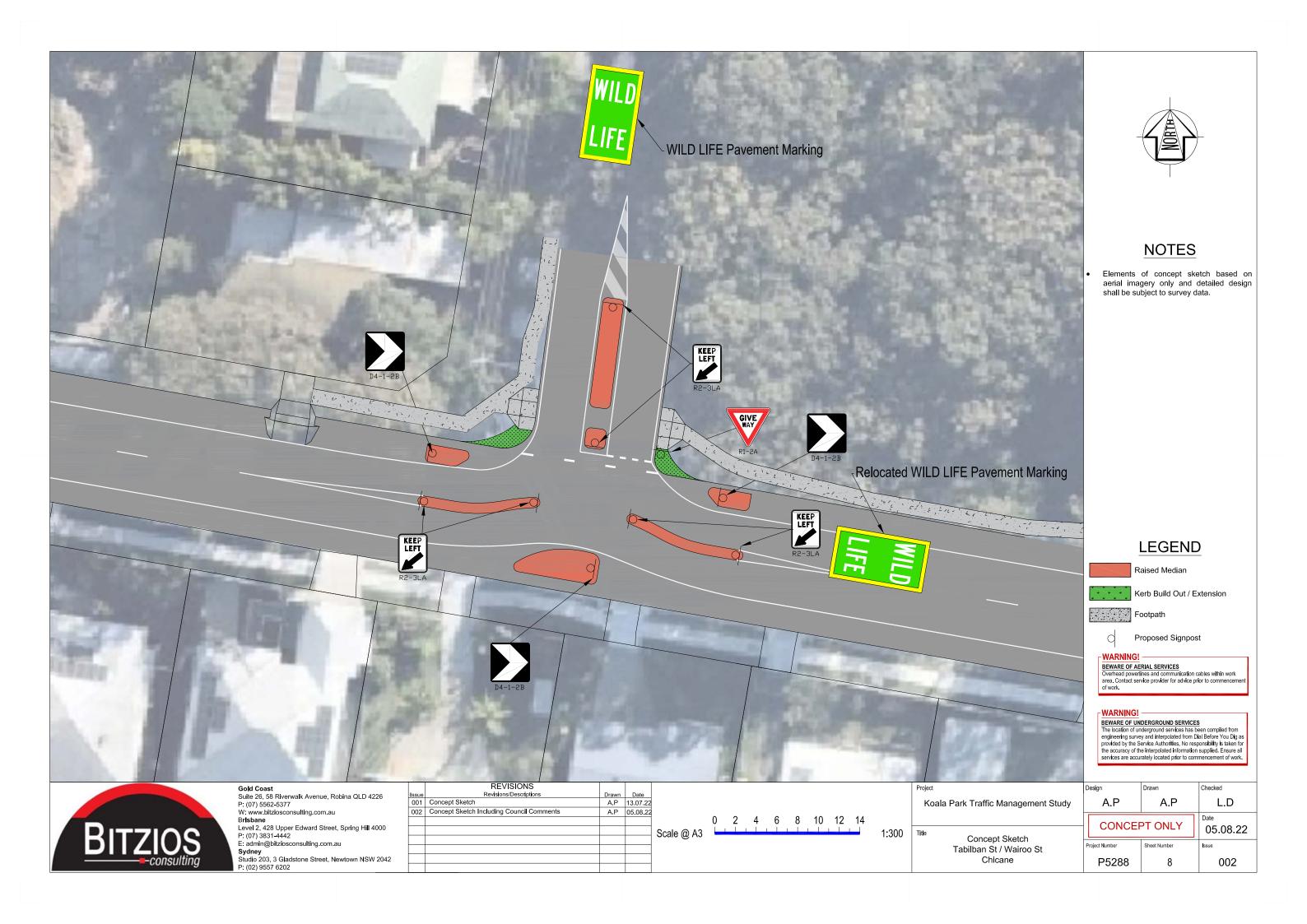
Sydney
Studio 203, 3 Gladstone Street, Newtown NSW 2042
P: (02) 9557 6202

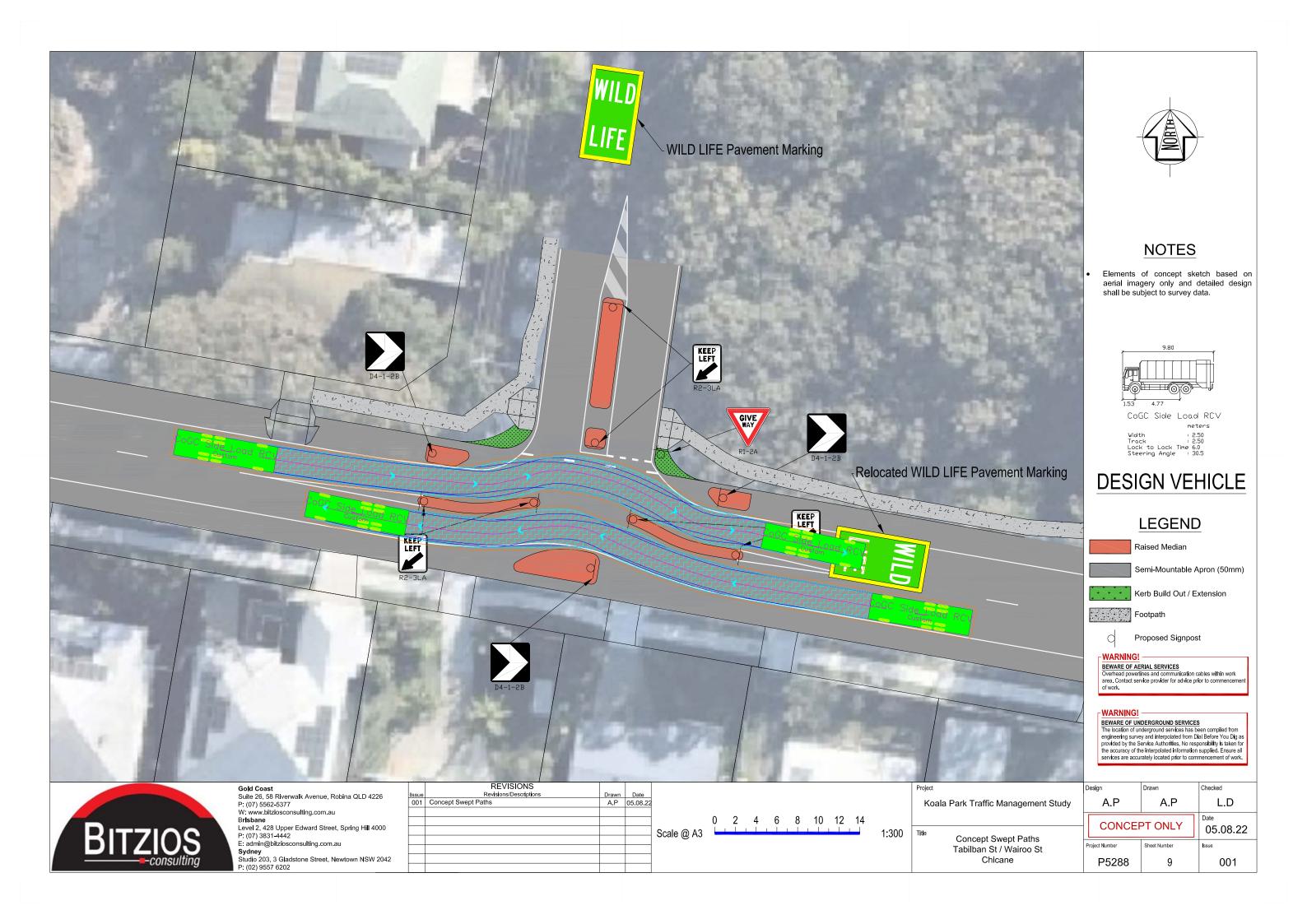
	The state of the s		_
	REVISIONS		
Issue	Revisions/Descriptions	Drawn	Date
001	Concept Sketch	A.P	13.07.22
002	Concept Sketch Including Council Comments	A.P	05.08.22

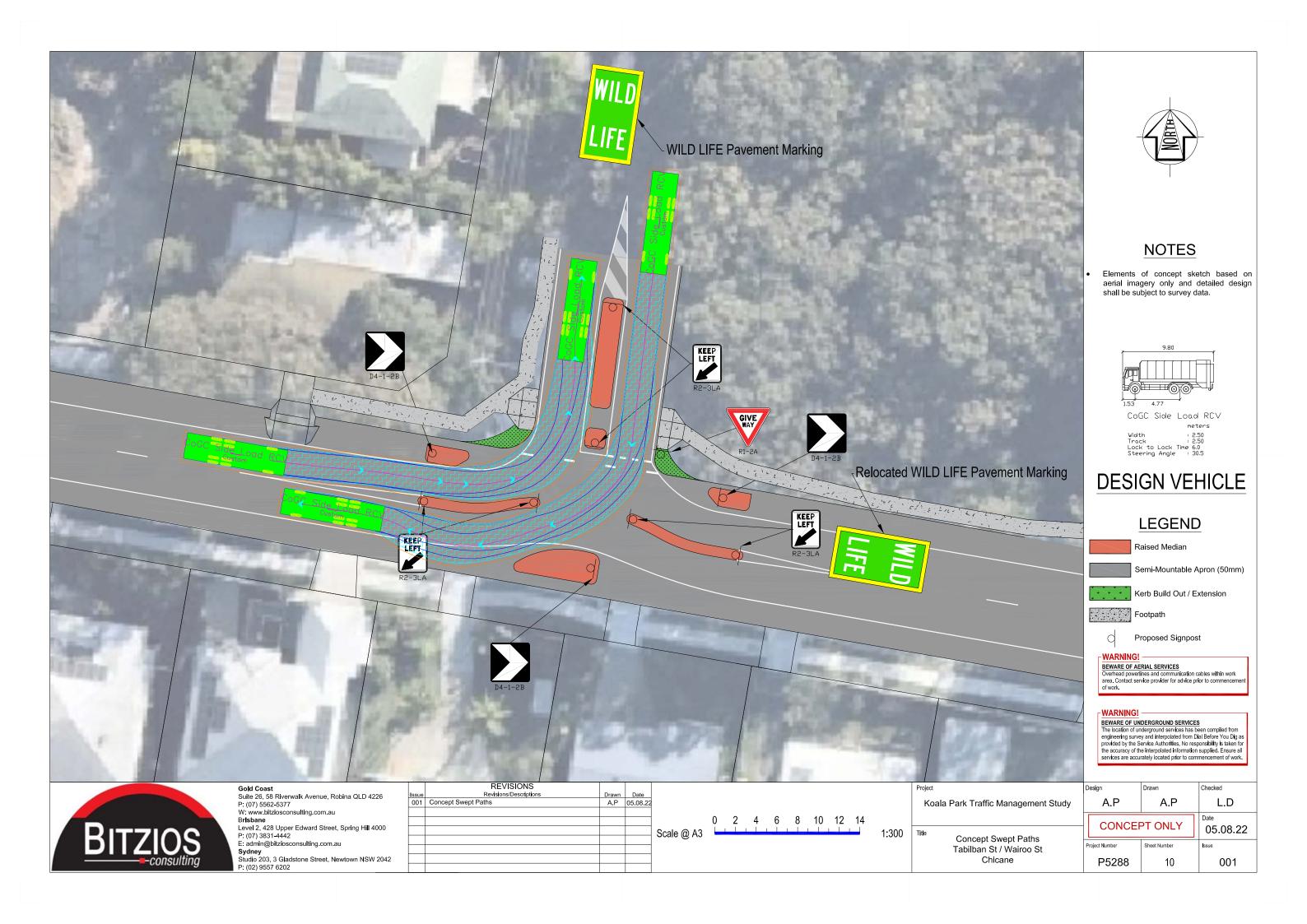

2	•	2	•	•	 . –	
Scale @ A3						

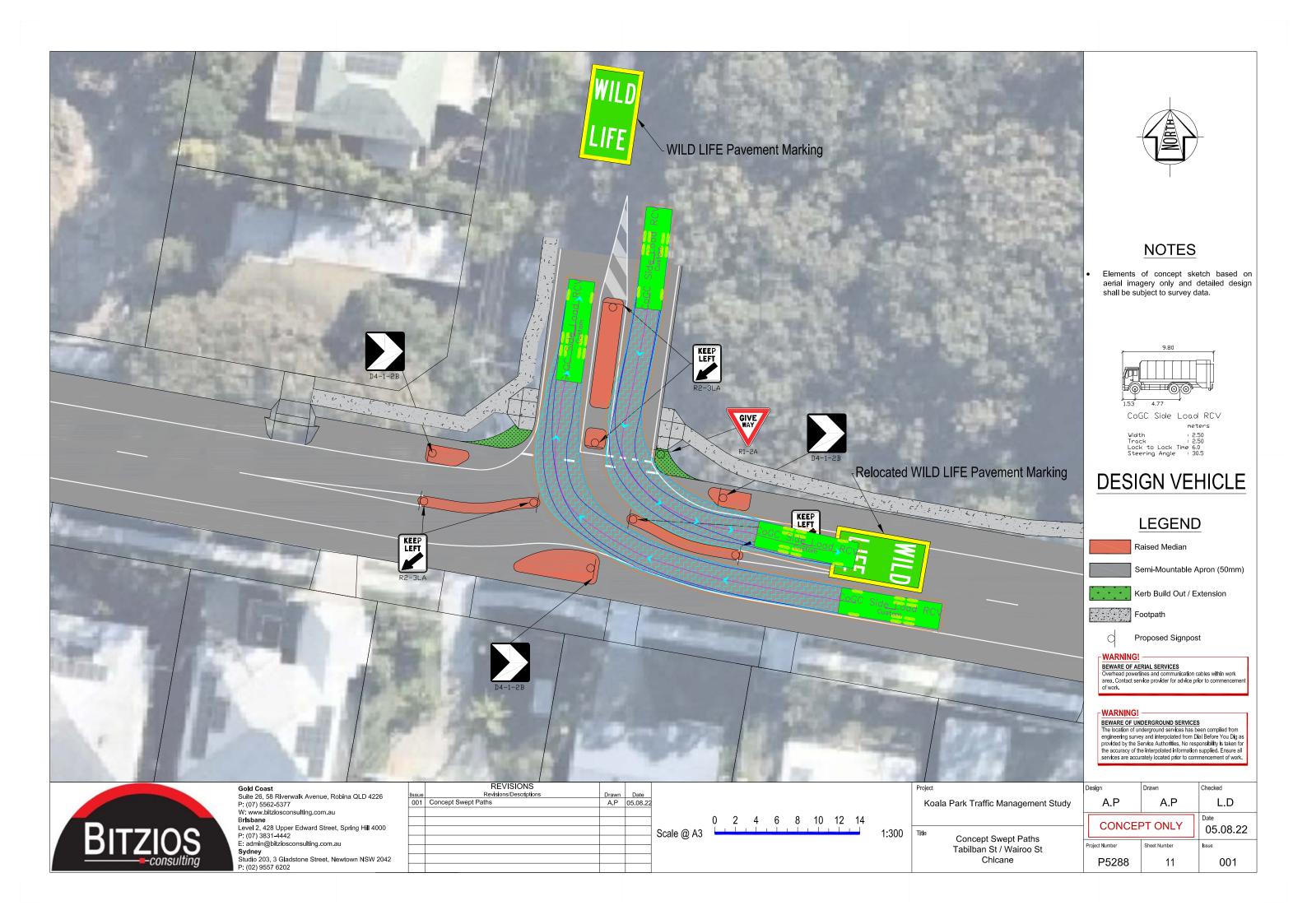

-	
	Project
	Koala Park Traffic Management Study
1:300	Title Concept Sketch

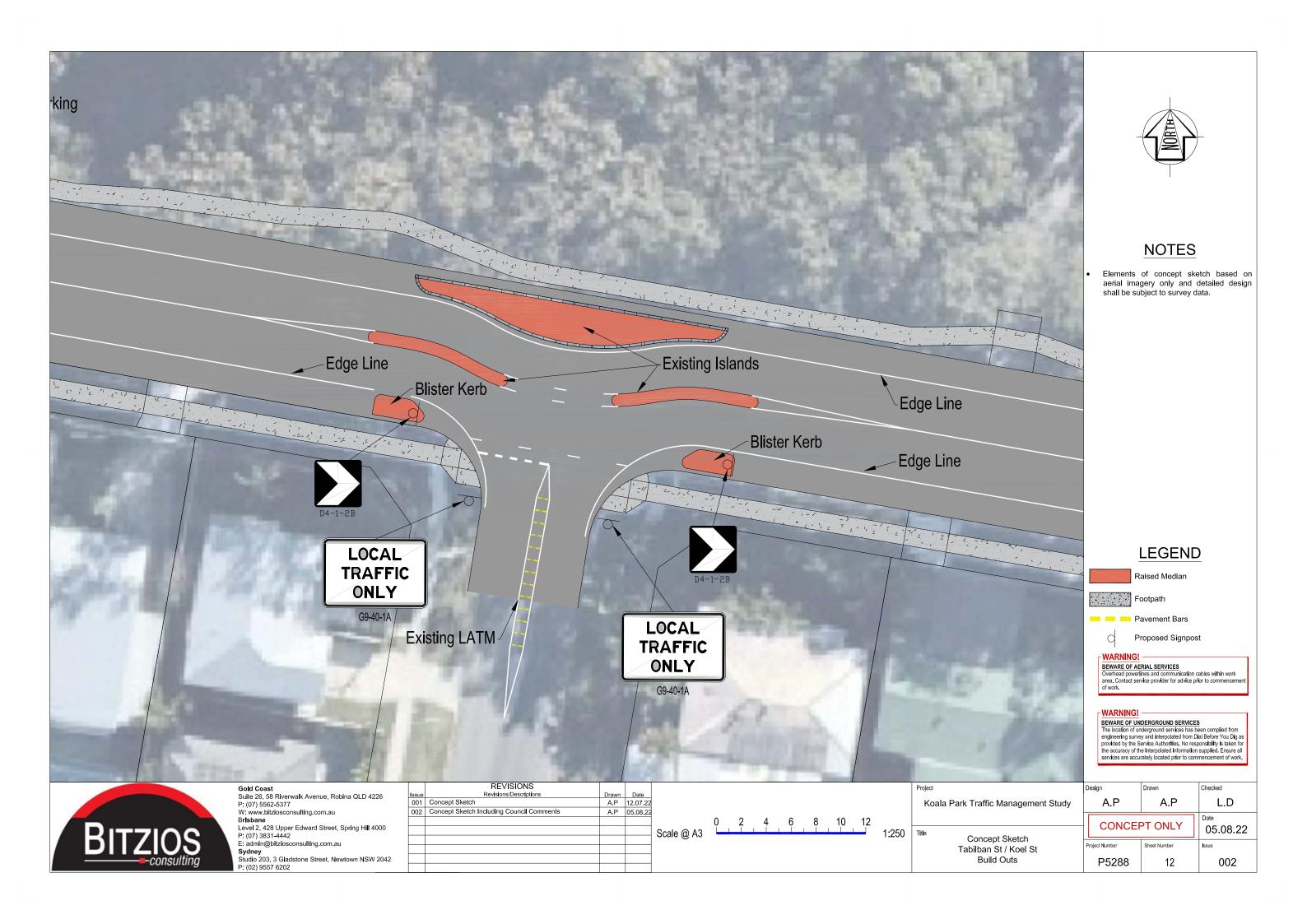

itle	Concept Sketch
	Tabilban St / Wairoo S
	Aerial Imagery

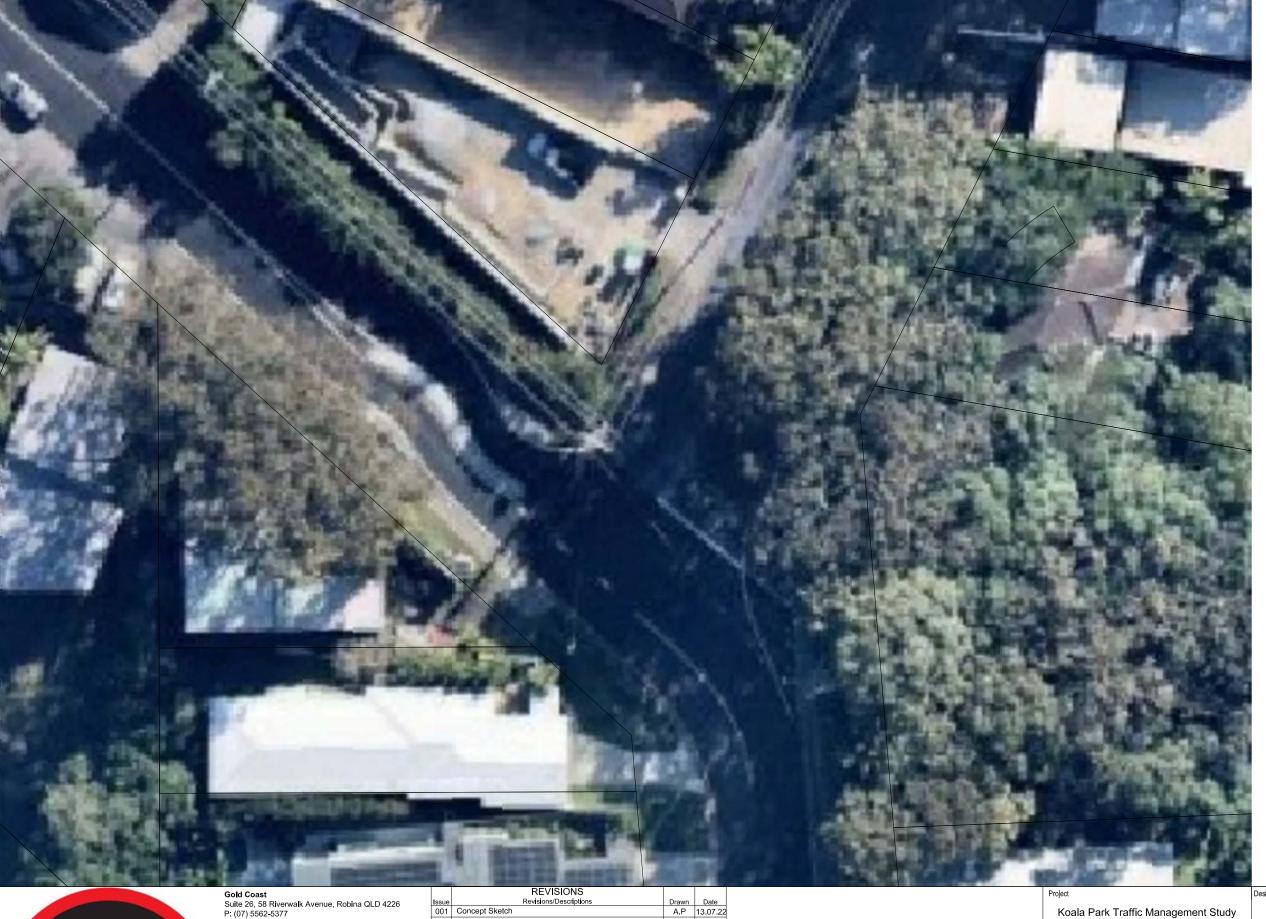

Design	Drawn	Checked
A.P	A.P	L.D
CONCEPT ONLY		Date 05.08.22
Project Number	Sheet Number	Issue
P5288	3	002











NOTES

-WARNING! -

Dewnate OF AERIAL SERVICES

Overhead powerlines and communication cables within work area. Contact service provider for advice prior to commenceme of work.

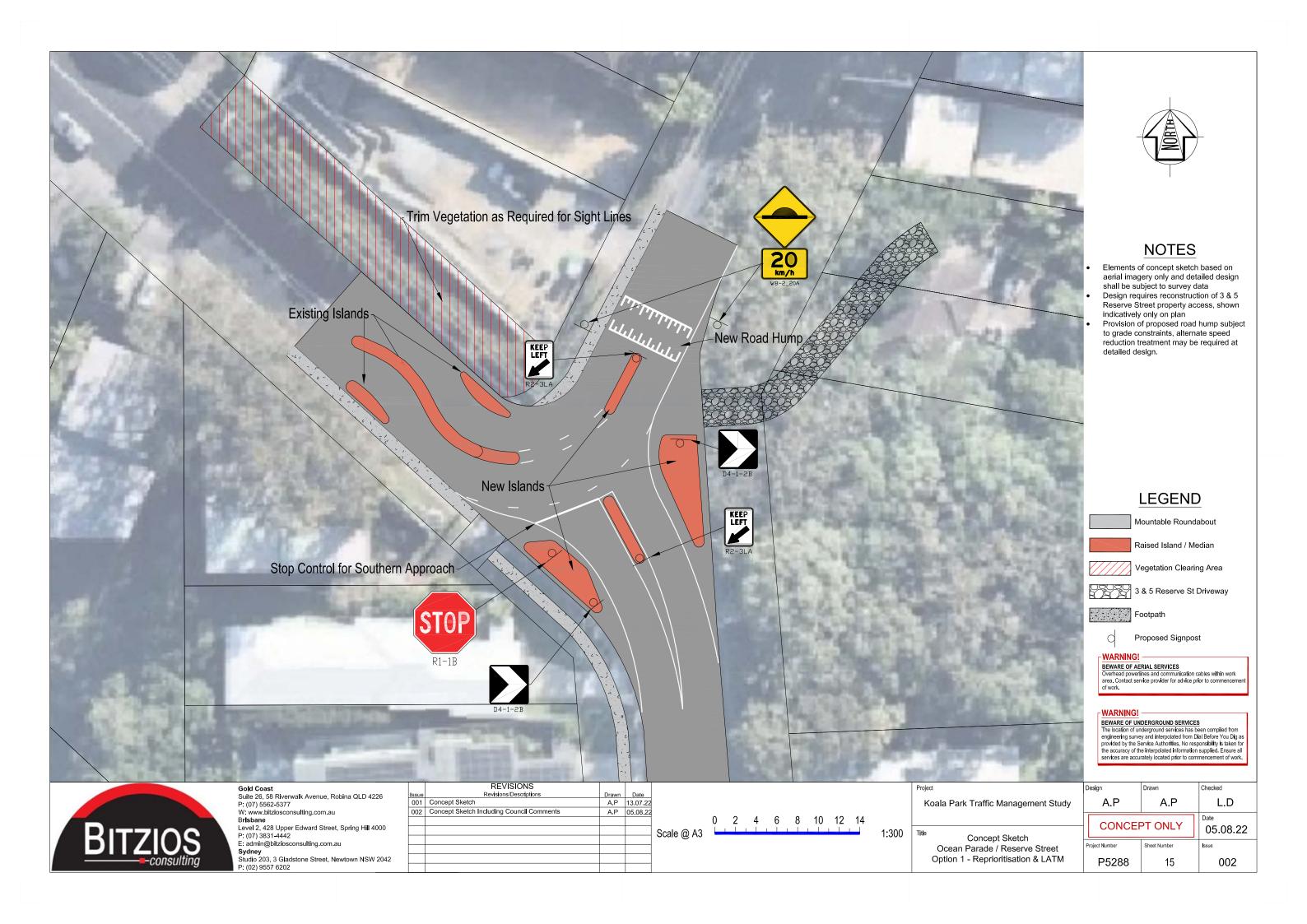
-WARNING! -

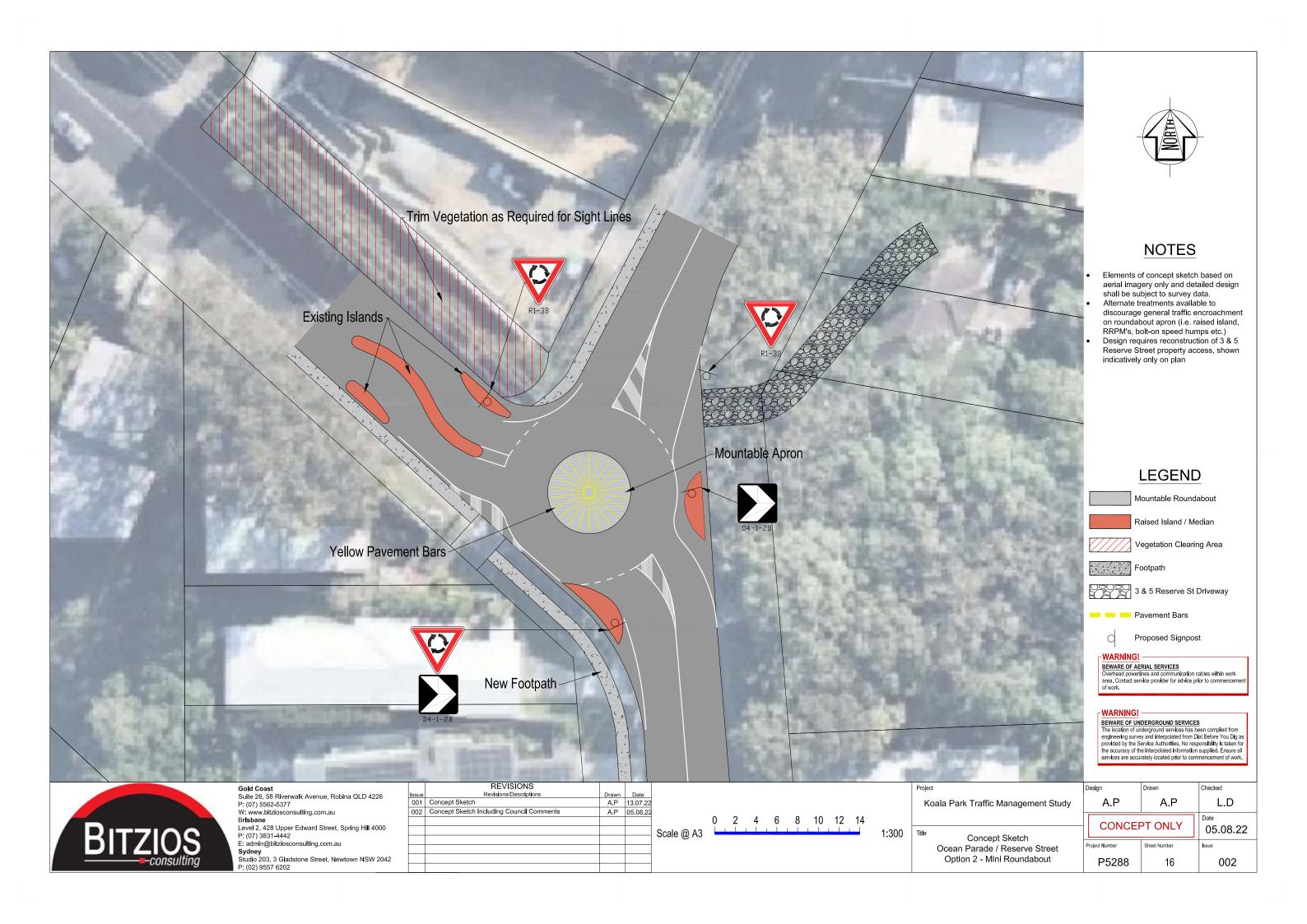
BEWARE OF UNDERGROUND SERVICES

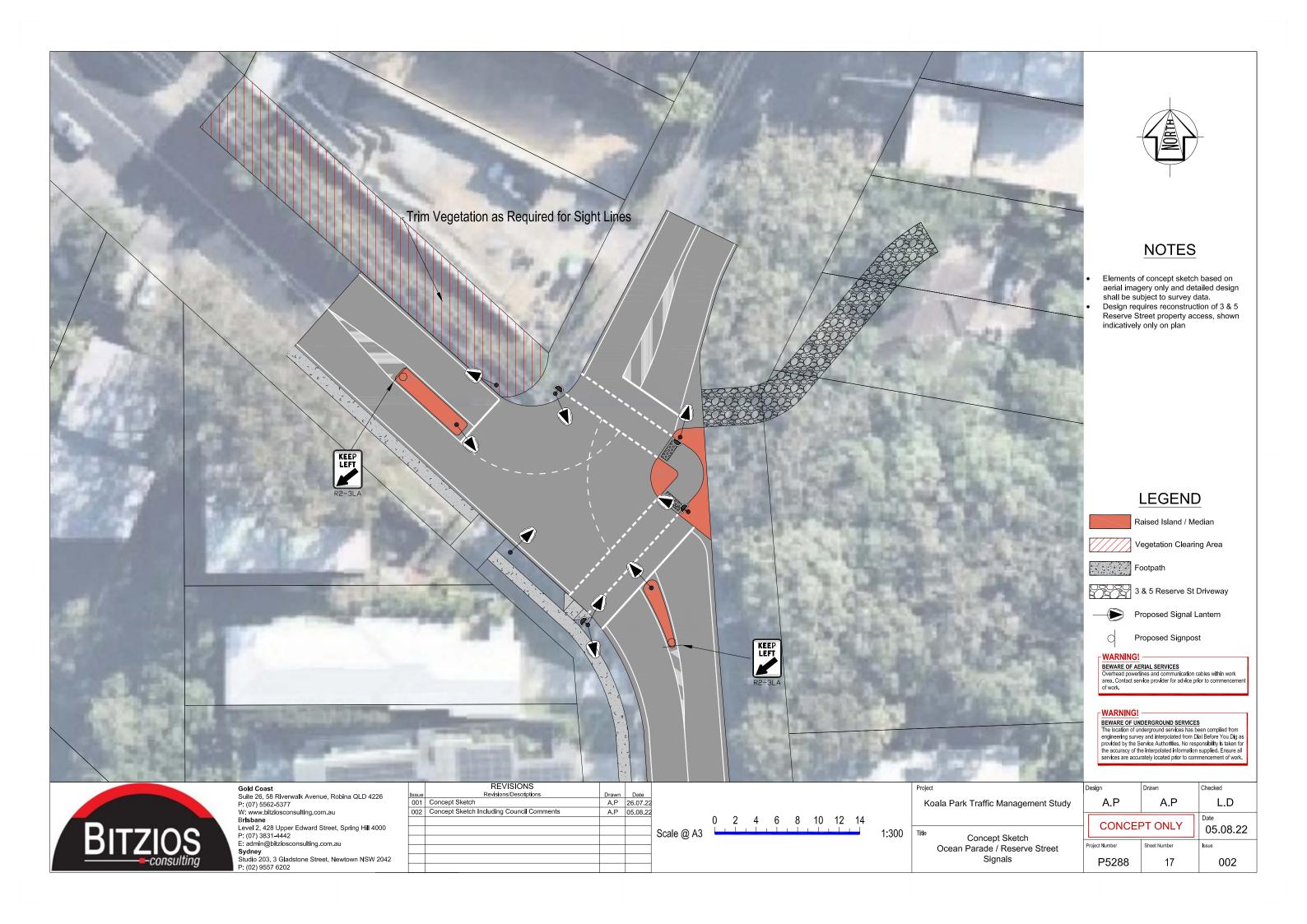
The location of underground services has been compiled from engineering survey and interpolated from Dial Before You Dig as provided by the Service Authorities. No responsibility is taken for the accuracy of the interpolated information supplied. Ensure all services are accurately located prior to commencement of work.

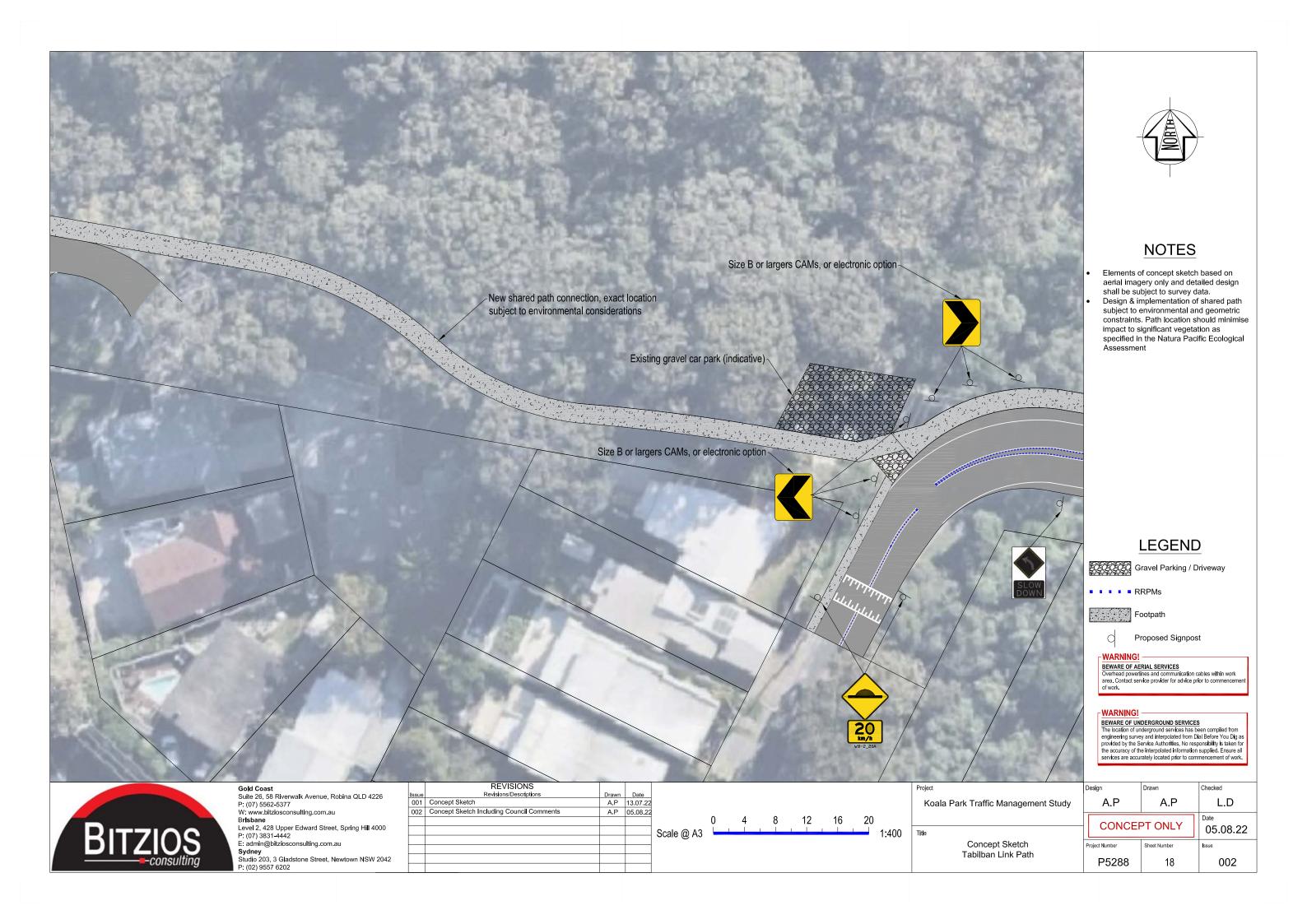
Gold Coast
Suite 26, 58 Riverwalk Avenue, Robina QLD 4226
P: (07) 5562-5377
W: www.bitziosconsulting.com.au
Brisbane
Level 2, 428 Upper Edward Street, Spring Hill 4000
P: (07) 3831-4442
E: admin@bitziosconsulting.com.au
Sydney

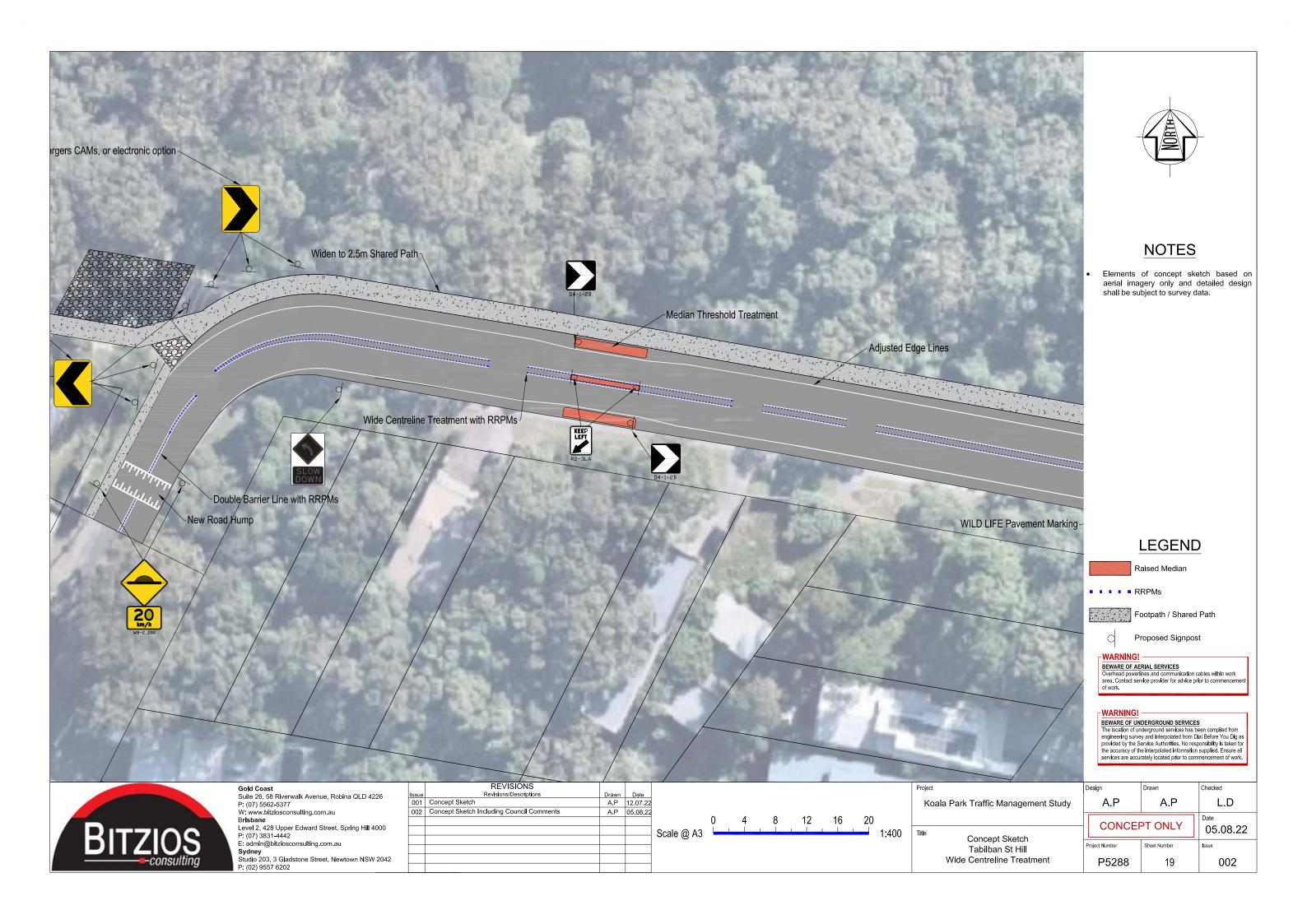
Sydney
Studio 203, 3 Gladstone Street, Newtown NSW 2042
P: (02) 9557 6202


	REVISIONS		
Issue	Revisions/Descriptions	Drawn	Date
001	Concept Sketch	A.P	13.07.22
002	Concept Sketch Including Council Comments	A.P	05.08.22
-			


	0	2	4	6	8	10	12	14
Scale @ A3								


Concept Sketch Ocean Parade / Reserve Street
Aerial Image


1:300


Design	Drawn	Checked
A.P	A.P	L.D
CONCER	PT ONLY	Date 05.08.22
Project Number	Sheet Number	Issue
P5288	14	002

-WARNING!

BEWARE OF AERIAL SERVICES

Overhead powerlines and communication cables within work area. Contact service provider for advice prior to commenceme of work.

-WARNING! -

BEWARE OF UNDERGROUND SERVICES
The location of underground services has been compiled from engineering survey and interpolated from Dial Before You Dig as provided by the Service Authorities. No responsibility is taken for the accuracy of the interpolated information supplied. Ensure all services are accurately located prior to commencement of work.

	REVISIONS		
Issue	Revisions/Descriptions	Drawn	Date
001	Concept Sketch	A.P	12.07.22
002	Concept Sketch Including Council Comments	A.P	05.08.22

	0	4		8	12		16		20		
Scale @ A3			_			-		-	_	1:400	


Project	
Koal	a Park Traffic Management Study
Title	Concept Sketch

e	Concept Sketch
	Tabilban St / Pindary Ave
	Aerial Imagery

Design	Drawn	Checked
A.P	A.P	L.D
CONCER	PT ONLY	Date 05.08.22
Project Number	Sheet Number	Issue
P5288	20	002

-WARNING! -

BEWARE OF AERIAL SERVICES

Overhead powerlines and communication cables within work area. Contact service provider for advice prior to commenceme of work.

-WARNING! -

BEWARE OF UNDERGROUND SERVICES

The location of underground services has been compiled from engineering survey and interpolated from Dial Before You Dig as provided by the Service Authorities. No responsibility is taken for the accuracy of the interpolated information supplied, Ensure all services are accurately located prior to commencement of work.

Sydney
Studio 203, 3 Gladstone Street, Newtown NSW 2042
P: (02) 9557 6202

	REVISIONS		
Issue	Revisions/Descriptions	Drawn	Date
001	Concept Sketch	A.P	12.07.22
002	Concept Sketch Including Council Comments	A.P	05.08.22

Scale @ A3 4 8 12 16 20 1:400

Concept Sketch Tabilban Street / Ikkina Road Aerial Image

Design	Drawn	Checked
A.P	A.P	L.D
CONCER	PT ONLY	Date 05.08.22
Project Number	Sheet Number	Issue
P5288	25	002

Appendix H: Independent Concept Budgetary Estimate Report

Version Number: 0

Date: 26 August 2022

Independent Concept Budgetary Estimate Report Koala Park Transport Study City of Gold Coast Council

Prepared by Rod Cossor Consulting Pty Ltd

Table of Contents

Co	ontact		3
Ε×	kecutive	Summary	4
1	Intro	duction	5
	1.1	Project background	5
	1.2	Project scope	8
	1.3	Purpose of this report	8
	1.4	Source of information	8
2	Estim	ate classification and methodology	9
	2.1	Classification and approach	9
	2.2	Estimate methodology	12
	2.3	Schedule of rates	12
	2.4	Independent cost estimate assumptions	12
	2.5	Engineering and design basis	13
	2.6	Quantity basis	13
	2.7	Contracting delivery strategy and procurement	13
	2.8	General estimate assumptions	13
	2.9	Exclusions	13
	2.10	Limitations	13
	2.11	Specific assumptions	14
3	Indep	endent Cost Estimate	16
	3.1	Direct job cost estimate	16
	3.2	Indirect job cost estimate	16
	3.3	Overheads and margin	17
	3.4	Cost estimate	17
4	Owne	er's Cost Estimate	18
	4.1	Owner's cost estimate overview	18
5	Risk a	nd contingency	20
	5.1	Risk methodology	20
	5.2	Probabalistic risk assessment, monte carlo and @risk	20
6	Cashf	low and escalation	22
7	Revie	w and verification	23
	7.1	Peer review	23
	7.2	Estimating team	23
Αŗ	ppendix	A Estimate Schedule (Expert Estimation)	24
Αŗ	ppendix	B Risk Reports	24
Αı	ppendix	C Peer Review Report	24

Contact

ТҮРЕ	DETAILS					
NAME OF COMPANY/TRADING NAME	Rod Cossor Consulting Pty Ltd					
ABN / ACN	81 681 746 571					
REPRESENTATIVE						
POSITION	Senior Civil Estimator					
HEAD OFFICE	126 Waterford-Tamborine Road, Waterford Queensland 4133					
MOBILE						
EMAIL						
DOCUMENT STATUS	NAME	DATE				
PREPARED BY:	– Senior Civil Estimator	12/08/2022				
PREPARED BY: REVIEWED BY:	– Senior Civil Estimator – Senior Project Engineer/Estimator	12/08/2022 12/08/2022				
REVIEWED BY:	– Senior Project Engineer/Estimator	12/08/2022				
REVIEWED BY: REVIEWED BY:	Senior Project Engineer/Estimator Senior Civil Estimator	12/08/2022 26/08/2022				
REVIEWED BY: REVISION NO.	Senior Project Engineer/Estimator Senior Civil Estimator REVISION DATE	12/08/2022 26/08/2022 STATUS				
REVIEWED BY: REVISION NO. 0	– Senior Project Engineer/Estimator – Senior Civil Estimator REVISION DATE 13 August 2022	12/08/2022 26/08/2022 STATUS Draft issued to CoGC for review				

Executive Summary

Rod Cossor Consulting Pty Ltd (RCC) is pleased to provide an independent concept budgetary estimate report including probabilistic contingency (P50-P90) to inform the overall Koala Park Transport Study (the "Project") for the City of Gold Coast Council (CoGC).

We understand the independent concept budgetary estimate report will support the City of Gold Coast Council in addressing resident petition to close Reserve Street to through traffic and construct the missing link at Tabilban Street at Burleigh Heads; RCC have prepared the Project Cost Summary (refer Figure 1), which is derived from first principles estimating and industry best practice.

Figure 1: Project cost summary

1 Introduction

City of Gold Coast Council ("Council") is undertaking the Koala Park Transport Study (the "Project") and have engaged Rod Cossor Consulting Pty Ltd (RCC) to deliver an Independent Concept Budgetary Estimate including probabilistic contingency (P50-P90) to support the overall Koala Park Transport Study.

1.1 Project background

Koala Park is a residential area within Burleigh Heads, situated on the northern side of Tallebudgera Creek, west of the Gold Coast Highway and east of West Burleigh Road. Access to the residential area is provided via Ikkina Road to the east and Tabilban Street to the west, both of which form an east-west/west-east connection between the Gold Coast Highway and West Burleigh Road as shown in Figure 1.

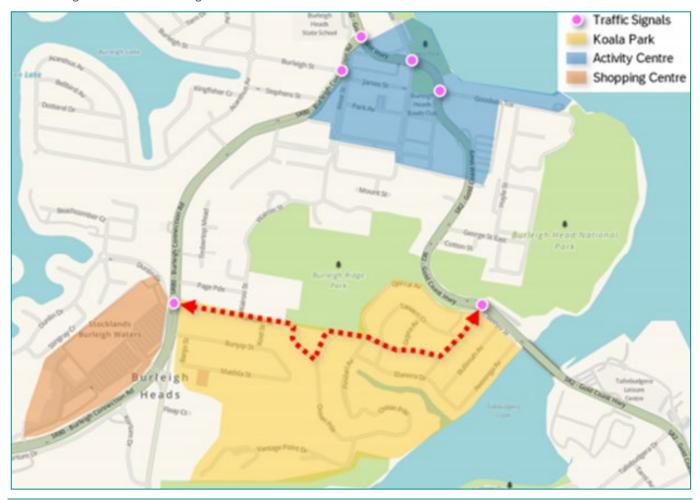


Figure 2: Project site location

The Tabilban Street is a commonly used 'short cut' for traffic travelling between the Gold Coast Highway between Palm Beach and West Burleigh Road. Which has resulted in a petition requesting that Council close Reserve Street to through traffic and construct the missing link at Tabilban Street at Burleigh Heads.

To date, Council has engaged with Bitzios Consulting to complete a Traffic Management Study for the Koala Park area. As part of the study, three overarching options have been considered, these include:

- Option A Providing minor network improvements to the existing through route;
- Option B Providing the Tabilban Street Link (petition option); and
- Option C Restricting traffic and allowing for local traffic only.

For each of the above options, concept plans/sub-options were considered many of which are consistent across all the options, as listed in the Table 1.

Table 1: Option A-C details

SUB-OPTIONS	OPTION A	OPTION B	OPTION C
Intersection of Tabilban Street and West- Burleigh Road	Provision of a pedestrian crossing on the southern leg of the intersection.	Provision of a left-hand slip lane existing Tabilban Street (would require property acquisition on corner)	Provision of a pedestrian crossing on the southern leg of the intersection
Tabilban Street between West-Burleigh Road and Wairoo Street	Line-marking of parking lanes and no stopping to lengthen left-turn pocket exiting Tabilban Street.	Line-marking of parking lanes and no stopping to lengthen left-turn pocket exiting Tabilban Street.	As per existing
Intersection of Tabilban Street and Wairoo Street	Provision of a mini roundabout	As per existing	Provision of a mini roundabout
Intersection of Tabilban Street and Koel Street	Intersection LATM including additional line marking and installation of kerb side islands on southern side of intersection	As per existing	Intersection LATM including additional line marking and installation of kerb side islands on southern side of intersection
Intersection of Tabilban Street and Ocean Parade	Intersection LATM including kerb extensions and formalisation of eastern leg	Reconfiguration of intersection/change of priority. Tabilban Street extension through unmade road reserve.	Intersection LATM including kerb extensions and formalisation of eastern leg
Tabilban Street Extension	Not applicable	 Tabilban Street extension through unmade road reserve. Cul-du-sac of intersection of Tabilban Street and Reserve Street intersection. 	Not Applicable
Intersection of Reserve Street and Ocean Parade	 Option 1: Minor intersection reconfiguration to provide improved sight distances. Option 2: Provision of a mini roundabout Option 3: Signalisation 		As per existing
Reserve Street	Potential minor road widening to provide some additional road shoulder width	As per existing	As per existing
Tabilban Street between Reserve Street and Pindari Avenue	 Additional line marking, provision of LATM treatment. Upgrade of signs and lines on corners. Provision of upgraded shared path. 	Provision of upgraded shared path.	 Additional line marking, provision of LATM treatment. Upgrade of signs and lines on corners. Provision of upgraded shared path.

Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue	 Option 1: Minor intersection reconfiguration to improve active transport access and improve safety. Option 2: Provision of a roundabout 	Option 1: Minor intersection reconfiguration to improve active transport access and improve safety.	Option 1: Minor intersection reconfiguration to improve active transport access and improve safety.
Intersection of Tabilban Street and Parnoo Avenue	Minor intersection reconfiguration to improve active transport access and improve safety	Minor intersection reconfiguration to improve active transport access and improve safety	Minor intersection reconfiguration to improve active transport access and improve safety
Intersection of Tabilban Street and Ikkina Road	 Option 1: Minor intersection reconfiguration to improve active transport access and improve safety. Option 2: Provision of a roundabout 	Minor intersection reconfiguration to improve active transport access and improve safety.	 Option 1: Minor intersection reconfiguration to improve active transport access and improve safety. Option 2: Provision of a roundabout
Full length of through route	Signs and line marking upgrade including but not limited to signage, line marking, electronic signage	Signs and line marking upgrade including but not limited to signage, line marking, electronic signage	Signs and line marking upgrade including but not limited to signage, line marking, electronic signage

1.2 Project scope

The Project scope of works involves the following;

- Review all project information and attachments provided, including concept plans.
- Attend a start-up meeting with the Council Project Team and Bitzios Consulting team (allow 1 hour via MS Teams).
- Provide a draft Capital Cost Estimate report including a probabilistic contingency (P50-P90) analysis for each of options (and sub-options) listed.
- Provide a cost breakdown for each option apportioning costs to each of the sub-options listed.
- Allow Council to review and make comment.
- Update the draft cost estimate incorporating Council's feedback and formally submit the final Capital Cost Estimate report.

1.3 Purpose of this report

Council engaged Rod Cossor Consulting to provide an independent concept budgetary estimate report to inform the overall Koala Park Transport Study of Council.

The Project is currently in the concept phases which requires an independent concept budgetary estimate to determine the Project feasibility for Council. Rod Cossor Consulting scope for the independent concept budgetary estimate involves delivery of:

- Independent concept budgetary estimate report;
- Draft Capital Cost Estimate Report including a probabilistic contingency (P50-P90) analysis; and
- Final Capital Cost Estimate Report including a probabilistic contingency (P50-P90) analysis.

1.4 Source of information

Rod Cossor Consulting has based this report on the following information, generally:

- 22-T1-00459 Koala Park Consult 4;
- P5288 Koala Park Option A Concept Base Sketches (Draft);
- P5288.001 Option A Design Sketch Package;
- P5288.001 Option B Design Sketch;
- P5288.001 Option C Design Sketch; and
- VP315658 ITQ Consultancy Services QS Koala Park (a79056659).

2 Estimate classification and methodology

2.1 Classification and approach

RCC have assumed the Project as a Type 2, estimate category type 2/3 with a class 4 estimate per the Queensland Department of Transport and Main Roads Project Cost Estimating Manual¹ classification of project types (refer Table 2).

Table 2: PCEM Estimate classification overview

CATEGORY	STAGE	KNOWL EDGE LEVEL	ESTIMATING	METHOD	PLANNE RISK CONTIN Y PARAM	GENC	CONFIDENC E LEVEL	CONTIN GENCY RANGE	NOTES	SERVICES
			Project Type 1 Complex Infrastructu re	Project Type 2 Normal Infrastructure	Min	Max				
1	Strategic Planning	<2%	Unit Rates	Global	-0.5	2	Very Low	40-70%	No formal scope	 Benchmarked unit rates from past projects. Constructability Advice Deterministic Risk Basis of Estimate Report
2	Project Proposal	1% to 15%	Unit Rates	Unit Rate	-0.3	1	Low	40-70%	A simple scope and strategy	 Benchmarked unit rates from past projects. Constructability Advice Deterministic Risk Basis of Estimate Report

-

¹ Project Cost Estimating Manual, Version 1.1 December 2021, Queensland Department of Transport and Main Roads

2/3	Options Analysis	5% to 25%	60% Unit Rates 40% First Principles	Unit Rate	-0.3	1	Low to Medium	35-55%	A preliminary scope and preferred options	 First Principle Estimate in Expert Estimator on critical construction items and Benchmarked unit rates from past projects on minor construction items Constructability Advice Deterministic Risk Basis of Estimate Report
3	Business Case (P90)	10% to 40%	First Principles at WBS 4 or 5	60% Unit Rates / 40% First Principles	-0.15	0.2	Medium	30-40%	An agreed scope and preferred option	 First Principle Estimate in Expert Estimator on critical construction items and Benchmarked unit rates from past projects on minor construction items Constructability Advice Monte Carlo Risk Model Simulation in @Risk Basis of Estimate Report
4/5	Preliminary / Detailed Design (P90)	30% to 80%	First Principles at WBS 4 or 5	20% Unit Rates / 80% First Principles Alternative First Principal at WBS 3	-0.1	0.15	Medium to High	10-30%	Developed design	 First Principle Estimate in Expert Estimator on critical construction items and Benchmarked unit rates from past projects on minor construction items Constructability Advice Monte Carlo Risk Model Simulation in @Risk Basis of Estimate Report

	Procureme nt / Implement ation	50% to 100%	First Principles at WBS 4 or 5, or alternatively Tender Schedule & Principal's Estimate	First Principles at WBS3 or Tender Schedule & Principal's Estimate	-0.05	0.1	Very High	5-15%	Contract details		First Principle Estimate in Expert Estimator Detailed Construction Program in Microsoft Project or Primavera P6 Constructability Advice Monte Carlo Risk Model Simulation in @Risk Basis of Estimate Report
--	---	----------------	---	--	-------	-----	-----------	-------	------------------	--	---

2.2 Estimate methodology

The estimated costs included within the scope of this estimate can be summarised to include:

- Contractors Direct Construction Costs;
- Contractors Indirect Construction Costs;
- Contractors Offsite Overheads and Margin;
- Risk and Opportunity; and
- Owner's Costs.

The first principles estimate is based on:

- Current plant and labour rates from real contractors drawn from recent similar projects delivered by RCC
- Overheads to suit private contractor construction in line with current market allowances; and
- Margin in line with current market rates.

CONSIDERATION FACTORS Site constraints Productivity of labour and plant Applicable work methods and possible alternatives Procurement of materials and subcontractors Staging of the works

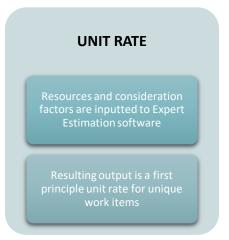
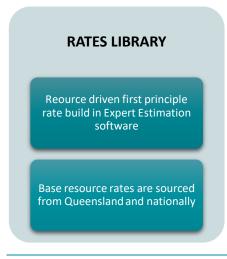
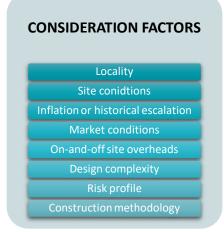




Figure 3: First principle rates generally follow and include the process detailed above however it must be preceded by an agreed construction methodology with CoGC.

2.3 Schedule of rates

Rod Cossor Consulting have utilised a Schedule of Rates (SoR) for the scope items, Figure 4 outlines the process followed, generally.

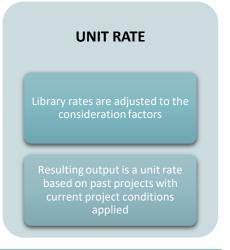


Figure 4: Schedule of rates (SoR) process

2.4 Independent cost estimate assumptions

Rod Cossor Consulting have made assumptions (refer Table 3) which underpin the basis of estimate.

Table 3: Independent cost estimate assumptions

PROJECT TYPE	Type 2
ESTIMATE CATEGORY	2/3
ESTIMATING METHOD	Unit Rate
DELIVERY MODEL	Construct only
CONTRACTOR SIZE	Tier 2/3
PROJECT GATEWAY	Gateway 1

2.5 Engineering and design basis

Rod Cossor Consulting have based the estimate on the documentation provided by CoGC.

2.6 Quantity basis

Rod Cossor Consulting developed a BOQ required to form the basis of developing the first principle estimate.

2.7 Contracting delivery strategy and procurement

Rod Cossor Consulting have assumed the Project will be procured through an open market tender targeted at local Tier 2 Civil Contractors on a Construct Only form of contract. If upon review, Council and management determine this is not valid, the estimate validity would require re-assessment.

2.8 General estimate assumptions

Provided in Table 4 are the key assumptions that Rod Cossor Consulting have made whilst preparing this report.

Table 4: General assumptions

#	ASSUMPTIONS
1	Estimate date is August 2022
2	No major service relocations are required
3	No Property Acquisitions are required
4	No modification to existing stormwater infrastructure required
5	All new islands assumed to be cast in place

2.9 Exclusions

Provided in Table 5 are the key exclusions that Rod Cossor Consulting have made in preparing this report.

Table 5: Exclusions

#	EXCLUSIONS					
1	Estimate excludes escalation and GST					
2	Legal Fees and Permits					
3	Taxation relief or Grants					
4	Working over or adjacent to gas mains					

2.10 Limitations

Rod Cossor Consulting advises that the cost estimates are limited to the relevant documentation, as provided by Council. As such, no allowance has been made for escalation beyond the date of this report.

2.11 Specific assumptions

Table 6: Option specific assumptions

	OPTION A	OPTION B	OPTION C
Intersection of Tabilban Street and West-Burleigh Road	No allowance made to modify existing traffic signals or include additional pedestrian controls.	 A Provisional Sum of \$150, 000 has been allowed to relocate the power pole at the corner of West Burleigh Road and Tabilban Street. A Provisional Sum of \$75,000 has been allowed for the relocation of the traffic light and adjacent controller at the corner of West Burleigh Road and Tabilban Street. A Provisional Sum of \$2,500,000 has been allowed for the acquisition of the property at 90 Tabilban Street to cater for the proposed turning lane. 	No allowance made to modify existing traffic signals or include additional pedestrian controls.
Intersection of Reserve Street and Ocean Parade Reserve Street	 No allowance for any retaining structures to the adjoining property following clearing works. Topsoil and turf allowed to cleared zone. No allowance for retaining structures to driveway at 3&5 Reserve Street. Works were identified as "Potential minor road widening to provide some additional road shoulder width" with no design sketches provided. It is assumed that this potential work is not required and no costs have been allowed. 		
Tabilban Street between Reserve Street and Pindari Avenue	 No allowance has been made for property access modifications to 14 Reserve Street. Clearing and nominal earthworks allowed for new shared path connection. Proposed path would be assumed to follow the natural contours. No retaining structures have been allowed. The upgraded shared path from Reserve Street to Djerral Ave has been priced on the assumption of removing the existing path and replacing with a new full width shared path. No allowance has been made to relocate the existing power poles on this route. 	 No allowance has been made for property access modifications to 14 Reserve Street. The upgraded shared path from Reserve Street to Djerral Ave has been priced on the assumption of removing the existing path and replacing with a new full width shared path. No allowance has been made to relocate the existing power poles on this route. 	 No allowance has been made for property access modifications to 14 Reserve Street. The upgraded shared path from Reserve Street to Djerral Ave has been priced on the assumption of removing the existing path and replacing with a new full width shared path. No allowance has been made to relocate the existing power poles on this route.

Intersection of Tabilban Street and Parnoo Avenue This work has been assumed to include out at the corner of Tabilban Street and Crescent.		t This work has been assumed to include the kerb build out at the corner of Tabilban Street and Tawarri Crescent.
Tabilban Street Extension	 Topsoil stripping assumed to be 100mm thick. The first 60m length at the highest point of the proposed road has been assumed to be in cut for a depth of 1.5m. 15% of this excavation volume is assumed to be in roce. The balance of the proposed road is assumed to requi 1.5m of fill. A reinforced concrete retaining wall is assumed for the length of this fill to minimise batter encroachment into the adjacent park. Wall footing assumed at 3m wide and 250mm the Wall height assumed at a.5m high and 250mm thick. Reinforcing rate assumed at 180kg/m3 Drainage has been assumed along one side of the road for the full length of the kerbing at the following sizes: 375mm = 30% 450mm = 30% 600mm = 10% Gully pits have been allowed at approximately 30 	e e e e e e e e e e e e e e e e e e e

3 Independent Cost Estimate

Rod Cossor Consulting Pty Ltd (Rod Cossor Consulting) works directly with Tier 1-3 Contractors and Subcontractors delivering competitive cost estimates and engineering advice. As such, Rod Cossor Consulting (RCC) have a deep understanding of the current and actual market place, through comprehensive and ongoing market analyses.

With our experience in mind, RCC have drawn upon this knowledge and have conducted further market research to inform this independent cost estimate. This approach ensures that our estimates reflect the actual market, providing greater certainty to the City of Gold Coast Council (Council) in their investment.

For the Project, RCC has assumed that a Tier 2 as the most suitable Contractor for delivery, and as such, have prepared the estimate on this basis.

3.1 Direct job cost estimate

Rod Cossor Consulting have undertaken a first principle rate build for the key cost drivers using Expert Estimation software. Each rate built is driven by rough quantities derived from limited information, should this change, the rates will be adjusted accordingly.

The direct job costs required to complete the works are built from the direct cost of all labour, materials, plant, and subcontractors. These are further detailed in Figure 5.

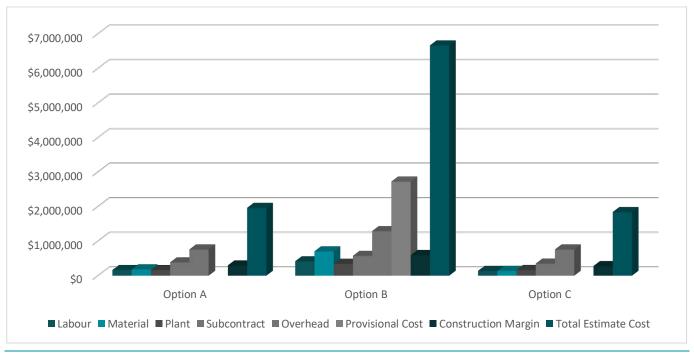


Figure 5: Direct job costs summary

3.2 Indirect job cost estimate

Rod Cossor Consulting have assumed a minimum Construction duration of 40 weeks for Option 2 and 3, 44 weeks for Option 5 and 42 weeks for Option 6, these assumptions have been applied to form the basis and develop the first principle indirect job cost build up in Expert Estimation. The indirect job costs that RCC has allowed are detailed in Table 7.

Table 7: Contractor's on site indirect job costs

COST CATEGORY	COMPONENT	SUBCOMPONENTS
ON SITE INDIRECT JOB COST OVERHEADS	Project management	Project manager, project engineer
(RECURRING)	Works management	Supervisors, administration officer, systems officers, surveyor, laboratory technician
	Site facilities	Office rentals (accommodation, photocopier, computer hardware and software, etc)

		Service utility charges (telephone, power, water and sewerage)
		Cleaning charges (office cleaning, septic pumping, refuse disposal, etc)
	Plant and equipment	Site staff vehicles, job trucks, pumps and generators, floating plant and loose tools
	Consumables	Stationery, miscellaneous materials
	Insurance and permits	Queensland Government and local government permit fees, insurances required by the contractor, bank guarantees and financial charges
ON SITE OVERHEADS INDIRECT JOBS COSTS (FIXED)	Travel	Travel costs not included in wages and salaries

3.3 Overheads and margin

Rod Cossor Consulting has a sound understanding of the market including current overheads and margin to be expected from a Tier 2 Contractor. As such, RCC has assumed Tie 2 Contractor would undertake the works under the estimated percentages:

- Margin 6.00 percent; and
- Offsite overheads 12.00 percent.

3.4 Cost estimate

The independent cost estimate has been developed based on current market conditions with production, labour, plant and subcontract / supplier rates, please refer to Appendix A Estimate Schedule (Expert Estimation).

4 Owner's Cost Estimate

4.1 Owner's cost estimate overview

Rod Cossor Consulting have developed the Owner's Cost based on a percentage of the Construction Costs, along with the provided Council costs. The method employed utilises a percentage approach rather than first principles, as the staff levels required for the Project were not known at the time of preparing this report.

The Owner's costs have been developed and summarised as the following (refer Table 10):

- 1. Portfolio & Project Planning;
- 2. Options Analysis;
- 3. Business Case;
- 4. Procurement and Readiness for Market;
- 5. Procurement and Readiness for Market or Construction;
- 6. Construction; and
- 7. Any Phase.

The Owner's costs generally include for:

- Project management costs (for the life of the project);
- Contract administration costs (for the life of the project);
- Strategic assessment costs (for the life of the project);
- Options analysis costs (incurred during the execution of this phase);
- Business case costs (incurred during the execution of this phase);
- Legal costs;
- Procurement costs;
- Property and land costs;
- Property and land costs;
- Environmental and Heritage costs;
- Approval costs;
- Contract administration;
- Principal supplied materials;
- As-constructed drawings; and
- Commissioning and hand over costs

Table 8: Owner's Cost Summary

	OPTION A	OPTION B	OPTION C
Intersection of Tabilban Street and West-Burleigh Road	\$191,870	\$5,697,984	\$207,670
Tabilban Street between West-Burleigh Road and Wairoo Street	\$10,850	\$9,266	\$0
Intersection of Tabilban Street and Wairoo Street	\$346,120	\$0	\$246,924
Intersection of Tabilban Street and Koel Street	\$67,165	\$0	\$72,685
Intersection of Tabilban Street and Ocean Parade	\$134,951	\$560,166	\$146,068
Tabilban Street Extension	\$0	\$5,238,113	\$0
Intersection of Reserve Street and Ocean Parade	\$980,930	\$0	\$0
Reserve Street	\$0	\$0	\$0
Tabilban Street between Reserve Street and Pindari Avenue	\$475,411	\$221,716	\$491,515
Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue	\$1,147,411	\$145,922	\$184,963
Intersection of Tabilban Street and Parnoo Avenue	\$120,333	\$102,753	\$130,245
Intersection of Tabilban Street and Ikkina Road	\$236,896	\$202,283	\$2,079,631
Full length of through route	\$15,191	\$4,919	\$16,446
Preferred options total	\$3,727,127	\$12,183,122	\$3,576,146

Provisional Optional Costs			
Intersection of Tabilban Street and Wairoo Street - Provision of mini roundabout in lieu of LATM	\$217,241		
Intersection of Reserve Street and Ocean Parade - Minor intersection reconfiguration in lieu of Mini roundabout	-\$330,927	\$0	\$0
Intersection of Reserve Street and Ocean Parade - Signalisation in lieu of Mini roundabout	\$281,679	\$0	\$0
New path through Tabilban Street Extension in Park	\$684,518	\$684,518	\$684,518
Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue - Minor intersection reconfiguration in lieu of roundabout	\$449,845	\$0	\$0
Intersection of Tabilban Street and Ikkina Road - Provision of roundabout in lieu of minor intersection reconfiguration	\$778,656	\$0	\$0
Intersection of Tabilban Street and Ikkina Road - Provision minor intersection reconfiguration in lieu of roundabout	\$0	\$0	-\$793,523
COST RANGE OF EACH OPTION			
Minimum value	\$3,396,200	\$12,183,122	\$2,782,623
Preferred option	\$3,727,127	\$12,183,122	\$3,576,146
Highest value	\$4,505,784	\$12,867,640	\$4,260,664

Rod Cossor Consulting note that 25 - 29 percent of the construction value is at the upper end of the expectant range. This is driven by a number of factors, significantly:

- Low construction value for a detailed scope of works
- - Disproportionally higher supervision and design requirements due to detailed scope of work

Note: The values for Figure 6 will be provided post CoGC review of revision 0 of this Report.

5 Risk and contingency

5.1 Risk methodology

Rod Cossor Consulting have undertaken a preliminary risk analysis² to determine the costs, risks and benefits associated with the identified Project Options. As such, RCC have applied a deterministic method with the contingency values summarised in including the percentages for the P50 and P90 outcomes of the @Risk simulations.

Rod Cossor Consulting notes that the ranges are not remarkable and are within the expected range of a concept budgetary estimate.

Table 9: Contingency values

	CONSTRUCTION + OWNERS COSTS	P50		PS	90	CONSTRUCTION + OWNERS COSTS + P90
	\$	\$	%	\$	%	\$
OPTION A	\$2,700,000.00	\$800,000.00	29.63%	\$1,200,000.00	44.44%	\$3,900,000.00
OPTION B	\$8,300,000.00	\$2,700,000.00	32.53%	\$4,000,000.00	48.19%	\$12,300,000.00
OPTION C	\$2,700,000.00	\$800,000.00	29.63%	\$1,200,000.00	44.44%	\$3,900,000.00

Expected PCEM risk range:

P50 - 20-40 percent,

P90 - 35-55 percent

PLANNED RISK

- Input base estimate into planned tab of the model
- Analyse each line item in estimate and categorise with a -/+ range on both quantities and rates

UNPLANNED

- Recieve Risk Register from CoGC, and input risks to the risk unplanned risk model
- Assess each risk to determine whether it is a risk to the Project and should be included in the model.
- For risks that are to be included in the unplanned model include ratings which are; likelihood of the unplanned risk occuring; consequence if the unplanned risk were to occur; and a low, mid and high value for the risk

- Select the most suitable probability distribution from; uniform; triangular; program evaluation and Review Technique (PERT); and discrete Bemouli and Binominal
- RCC analyse over 10,000 iterations using @Risk to identify differing cost combinations and to build up a probability distribution of overall project cost, @Risk then produces an output graph displaying the P50 and P90 value.

Figure 6: probabilistic risk assessment methodology

5.2 Probabalistic risk assessment, monte carlo and @risk

Probabilistic risk assessment involves using the Monte Carlo analysis to estimate the possibility of a cost variation at a line-by-line level and determines the probability distribution of the expected out-turn cost for investment projects.

Conducting a Monte Carlo simulation on the estimate provides the estimate with a statistical sampling which determines the likelihood of countless feasible outcomes of given a model. The likelihood of Monte Carlo simulation outcomes is scored

² Queensland Government, Project Assessment Framework, Preliminary Evaluation July 2015

within a given range and is determined by the probability density of the inputs and reflect the likelihood of an outcome within a range to occur in reality.

Rod Cossor Consulting implements @Risk software which runs a large number of iterations for differing cost combinations within an estimate enabling the build-up of probability distribution for an overall project cost; as such RCC undertook a probabilistic risk assessment using @Risk software to inform the risk profile of the provided independent concept budgetary estimate.

PLANNED (INHERENT RISK)

Planned risks relate to potential of known aspects of a Project. These risks are measured in terms of scope, quantity, and productivity, and vary over time.

Planned risks consider the potential for variance in the quantity, productivity, and rates, including quantification of nominated scope of work (quantity variance); and estimated productivity and rates associated with estimate (price variance).

UNPLANNED RISKS

Unplanned risks are potential changes to circumstances that may impact the scope or nature of works to be undertaken, thus impacting the cost to deliver the Project.

Unplanned risks include any risks associated with unmeasured items not listed in the base estimate, typically due to being either loosely identified or unknown at the time of preparing the base estimate.

These risks range across government, regulatory compliance, land acquisition, design, contractor/supplier and stakeholders

Figure 7: @risk output

Please refer to **Appendix B** Risk Reports

6 Cashflow and escalation

No escalation is allowed for due to the Project as it is assumed to be completed within the next financial year. The only volatile material that would be required is petroleum products required for asphalt and fuel for plant and equipment, with any fuel increases having minimal impact on the overall Project.

7 Review and verification

7.1 Peer review

Rod Cossor Consulting has developed this independent cost estimate through market research and sounding, and has been peer reviewed by to ensure the following:

- Quantities are accurate;
- Cost estimates are based on current market conditions;
- Construction methodology and program that under pins the estimate is of sound logic and achievable, considering site
 conditions and constraints; and
- Risk and contingency consider the project specific characteristics and incorporates lessons learned from past projects to meet future market conditions and expectations.

Please refer to Appendix B Peer Review Report

7.2 Estimating team

The estimating team, led by (Principal Civil Estimator) of Rod Cossor Consulting Pty Ltd prepared the estimates for the Project. Rod worked collaboratively with his team comprised of (Senior Project Engineer/Estimator) and (Senior Writer) who led the development of the Project risk assessment and associated outcomes.

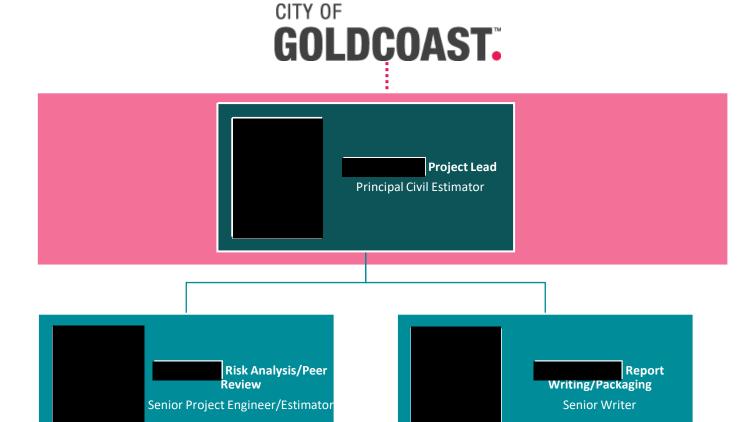
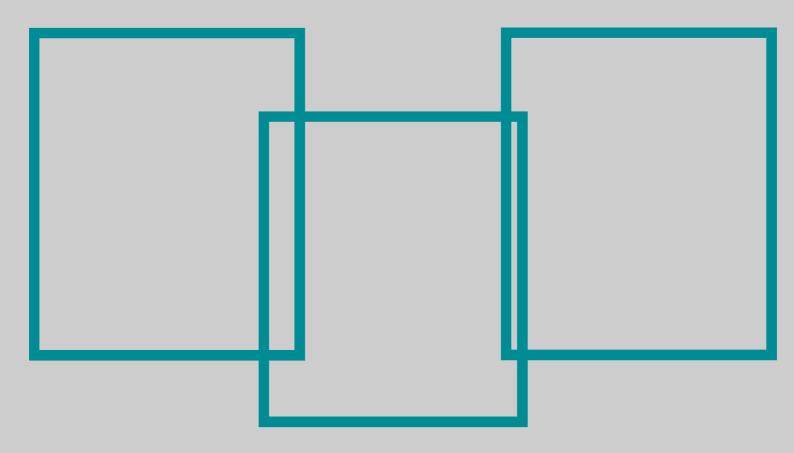



Figure 8: Independent Concept budgetary estimate consultant team

APPENDIX A

EXPERT ESTIMATION SCHEDULES

Item #	Description	Unit	Quantity	Unit Rate	Amount
1	Intersection of West Burleigh Road and Tabilban Street				
	Extended median with cut throughs				
	Traffic island	m2	25.00	1,099.87	27,497.00
	Concrete kerb crossings, [Type TGSI]	each	3.00	4,113.00	12,339.00
	Median nose and extension	m2	19.00	1,492.70	28,361.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	6,829.00	6,829.00
	Linemarking	item	1.00	1,347.00	1,347.00
	Traffic controllers	day	7.00	3,535.40	24,748.00
					101,121.00
2	Tabilban Street between West-Burleigh Road and Wairoo Street				
	Linemarking	item	1.00	3,066.00	3,066.00
	Traffic controllers	day	1.00	2,652.00	2,652.00
					5,718.00
3	Intersection of Tabilban Street and Wairoo Street				
	Removal of concrete footpath	m2	38.00	102.65	3,901.00
	Removal of existing island	m2	5.00	408.60	2,043.00
	Removal of kerb crossing	each	2.00	902.00	1,804.00
	Footpath	m2	48.00	386.05	18,530.00
	Concrete kerb crossings, [Type TGSI]	each	3.00	4,113.00	12,339.00
	Kerb Build outs and nose				
	Removal or demolition of concrete kerb	m	15.00	178.90	2,684.00
	Median nose and buildouts	m2	12.00	2,178.50	26,142.00
	New Islands	m2	87.00	916.84	79,765.00
	Linemarking	item	1.00	10,306.00	10,306.00
	Sign R1-2A	no	1.00	565.00	565.00
	Sign R2-3LA	no	6.00	546.90	3,281.00
	Sign D4-1-1A	no	1.00	640.00	640.00
	Sign D4-1-2B	no	2.00	597.00	1,194.00
	Topsoil and turf	m2	40.00	135.05	5,402.00
	Traffic controllers	day	10.00	1,381.90	13,819.00
					182,415.00
4	Intersection of Tabilban Street and Koel Street				
	Blister kerb	m2	13.00	1,934.60	25,150.00
	Linemarking	item	1.00	1,994.00	1,994.00
	Sign D4-1-2B	no	2.00	597.00	1,194.00
	Sign G9-40-1A	no	2.00	610.00	1,220.00
	Traffic controllers	day	4.00	1,460.00	5,840.00
					35,398.00
5	Intersection of Tabilban Street and Ocean Parade				
	Removal or demolition of concrete kerb	m	27.00	99.38	2,683.00
	Kerb build outs	m2	36.00	1,258.95	45,322.00
	Linemarking	item	1.00	2,260.00	2,260.00
	Sign D4-1-2B	no	1.00	597.00	597.00
	Sign R1-2A	no	1.00	565.00	565.00
	Sign R2-3LA	no	2.00	547.00	1,094.00

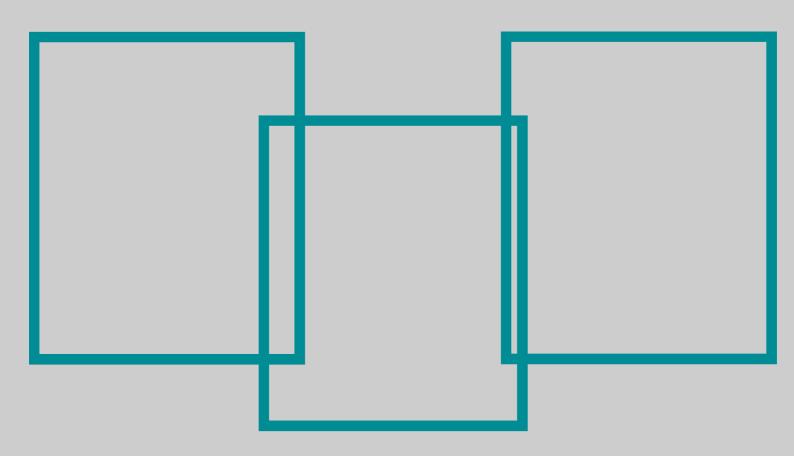
	Sign tc1790	no	1.00	9,558.00	9,558.00
	Traffic controllers		4.00	2,261.00	9,044.00
	Tranic controllers	day	4.00	2,201.00	71,123.00
	Tabilhan Charat Estancian				71,123.00
6	Tabilban Street Extension				
	Not applicable				0.00
					0.00
7	Intersection of Reserve Street and Ocean Parade Minor intersection reconfiguration to provide improved sight				
Option 1	distances.				
					0.00
Option 2	Provision of a mini-roundabout				
	Clearing & grubbing	day	1.00	17,038.00	17,038.00
	New Islands	m2	20.00	1,425.60	28,512.00
	Mountable Island	m2	51.00	577.71	29,463.00
	Linemarking	item	1.00	3,385.00	3,385.00
	Sign D4-1-2B	no	2.00	597.00	1,194.00
	Sign R1-1B	no	3.00	566.00	1,698.00
	Footpath	m2	48.00	386.05	18,530.00
	Topsoil and turf	m2	260.00	82.34	21,408.00
	Additional items to allow for pavement reinstatement to limit of work	xs .			
	Removal or demolition of concrete kerb	m	154.00	83.20	12,813.00
	Profile Asphalt with Bobcat	m2	910.00	23.28	21,185.00
	Road excavation	m3	273.00	137.37	37,502.00
	Subbase	m3	137.00	324.22	44,418.00
	Subsoil drains, Type B	m	133.00	98.03	13,038.00
	Kerb	m	133.00	213.80	28,435.00
	Base	m3	390.00	314.99	122,846.00
	Preparation of the existing surface	m2	860.00	3.26	2,804.00
	Prime @ 1 l/m2	litre	860.00	6.08	5,229.00
	Heavy duty dense graded asphalt in surfacing course, AC [nominal				
	size] H mix	tonne	103.20	520.99	53,766.00
	Traffic controllers	day	20.00	2,685.70	53,714.00
					516,978.00
Option 3	Signalisation				
					0.00
8	Reserve Street				
	Not applicable				
					0.00
9	Tabilban Street between Reserve Street and Pindari Avenue				
9a	New Reserve Path Section				
9b	Works between Reserve St and Pindari Ave				
	Removal of concrete footpath - narrow section	m2	84.00	78.78	6,618.00
	New Footpath - 2.5m wide shared path	m2	350.00	336.39	117,737.00
	New Road Hump	no	1.00	10,963.00	10,963.00
	New Islands	m2	31.00	1,222.18	37,888.00
	Linemarking	item	1.00	28,050.00	28,050.00
	Sign D4-6B	no	6.00	592.40	3,554.00
	Sign R1-3B	no	1.00		614.00

	1		ı		
	Sign R2-3LA	no	3.00	547.00	1,641.00
	Sign D4-1-2B	no	2.00	597.00	1,194.00
	Sign tc1790	no	1.00	9,558.00	9,558.00
	Sign W5-10	no	2.00	576.00	1,152.00
	Sign W8-2-20A	no	2.00	614.00	1,228.00
	Traffic controllers	day	14.00	2,168.40	30,358.00
					250,555.00
10	Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue				
Option 1	Minor intersection reconfiguration to improve active transport access				
	and improve safety.				0.00
Option 2	Provision of a roundabout				
Option 2	Trousies of a realisable				
	Removal or demolition of concrete kerb	m	52.00	93.85	4,880.00
	Removal of demonstration of concrete kerb		32.00	33.03	4,000.00
	Kerb buildouts	m	60.00	281.53	16,892.00
	Topsoil and turf buildouts	m2	132.00		20,271.00
	Footpath	m2	10.00	586.40	5,864.00
	<u> </u>		3.00		
	Concrete kerb crossings, [Type TGSI]	each		4,113.00	12,339.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00		6,829.00
	New Islands	m2	31.00		34,164.00
	Mountable Island	m2	79.00		39,948.00
	Linemarking	item	1.00	3,450.00	3,450.00
	Sign R1-3B	no	4.00	614.00	2,456.00
	Sign R2-3LA	no	3.00	547.00	1,641.00
	Additional items to allow for pavement reinstatement to limit of works				
	Removal or demolition of concrete kerb	m	215.00		17,959.00
	Profile Asphalt with Bobcat	m2	1,350.00		31,455.00
	Road excavation	m3	405.00		56,064.00
	Subbase	m3	203.00	310.73	63,078.00
	Subsoil drains, Type B	m	215.00		
	Kerb	m	215.00	189.46	
	Base	m3	203.00	316.03	64,154.00
	Preparation of the existing surface	m2	1,320.00	3.26	4,303.00
	Prime @ 1 l/m2	litre	1,320.00	6.08	8,026.00
	Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix	tonne	158.40	520.99	82,525.00
	Traffic controllers	day	25.00	2,680.48	67,012.00
					604,718.00
11	Intersection of Tabilban Street and Parnoo Avenue				
	This has been assumed to be the intersection with Tawarri Crescent				
	Removal or demolition of concrete kerb	m	23.00	116.70	2,684.00
	Kerb buildouts	m	25.00		7,176.00
	Topsoil and turf buildouts	m2	41.00		10,166.00
	Removal of concrete footpath	m2	40.00		3,980.00
	Footpath	m2	45.00		17,908.00
	Concrete kerb crossings, [Type TGSI]	each	1.00		
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00		
			1.00	5,525.00	0,023.00

	T	ı	l .		
	Linemarking	item	1.00	1,520.00	1,520.00
	Traffic controllers	day	3.00	2,833.00	8,499.00
					63,419.00
12	Intersection of Tabilban Street and Ikkina Road				
Option 1	Minor intersection reconfiguration to improve active transport access and improve safety.				
	Removal or demolition of concrete kerb	m	15.00	178.90	2,684.00
	Kerb buildouts	m	22.00	293.30	6,453.00
	Topsoil and turf buildouts	m2	34.00	284.12	9,660.00
	New Islands	m2	108.00	755.68	81,613.00
	Linemarking	item	1.00	1,954.00	1,954.00
	Sign R1-2A	no	1.00	565.00	565.00
	Sign R2-3LA	no	4.00	547.00	2,188.00
	Sign D4-1-2B	no	1.00	596.00	596.00
	Traffic controllers	day	7.00	2,734.00	19,138.00
					124,851.00
Option 2	Provision of a roundabout				
	Additional items to allow for pavement reinstatement to limit of works				
					0.00
13	Full length of through route				
	Sign R1-1B	no	3.00	1,012.00	3,036.00
	Linemarking	item	1.00	3,119.00	3,119.00
	Traffic controllers	day	1.00	1,851.00	1,851.00
					8,006.00
	Total for Project				1,964,302.00

Item #	Description	Unit	Quantity	Unit Rate	Amoun
1	Intersection of West Burleigh Road and Tabilban Street				
	Provision of a left-hand slip lane existing Tabilban Street (would				
	require property acquisition on corner)				
	Energex - relocation of power pole (Provisional)	item	1.00		150,000.00
	Relocation of traffic light and controller (Provisional)	item	1.00		75,000.00
	Property Acquisition (Provisional)	item	1.00		2,500,000.00
	Demolish property	each	1.00	92,357.00	92,357.00
	Topsoil and turf property	m2	800.00	68.22	54,576.00
	Service locations	Item	1.00	9,074.00	9,074.00
	Removal or demolition of concrete kerb	m	60.00	137.53	8,252.00
	Removal of concrete footpath	m2	116.00	92.33	10,710.00
	Excavation	m3	41.00	209.46	8,588.00
	Existing Subgrade testing (Provisional Quantity, if ordered	set	2.00	1,687.00	3,374.00
	Subgrade in cuttings	m2	150.00	32.19	4,829.00
	Subbase	m3	25.00	630.88	15,772.00
	Subsoil drains, Type B	m	60.00	121.64	7,298.00
	Kerb	m	60.00	277.09	16,625.00
	Concrete kerb crossings, [Type TGSI]	each	1.00	4,127.00	4,127.00
	Base	m3	25.00	630.88	15,772.00
	Asphalt	m2	150.00	175.99	26,399.00
	Footpath	m2	60.00	338.91	20,335.00
	Topsoil and turf	m2	150.00	76.08	11,412.00
	Linemarking	item	1.00	1,222.00	1,222.00
	Traffic controllers	item	1.00	81,414.00	81,414.00
					3,117,136.00
2	Tabilban Street between West-Burleigh Road and Wairoo Street				
	Linemarking	item	1.00	2,718.00	2,718.00
	Traffic controllers	day	1.00	2,351.00	2,351.00
				_,00	5,069.00
3	Intersection of Tabilban Street and Wairoo Street				
	As per existing				
					0.00
4	Intersection of Tabilban Street and Koel Street				
	As per existing				
					0.00
5	Intersection of Tabilban Street and Ocean Parade				
	Removal or demolition of concrete kerb	m	81.00	77.44	6,273.00
	Removal of existing island	m2	46.00	70.85	3,259.00
	Asphalt patching where islands removed	m2	46.00	385.69	17,742.00
	Excavation	m3	240.00	108.41	26,018.00
	Existing Subgrade testing (Provisional Quantity, if ordered	set	2.00	1,687.00	3,374.00
	Subgrade in cuttings	m2	800.00	13.86	11,088.00
	Subbase	m3	120.00	320.14	38,417.00
	Subsoil drains, Type B	m	81.00	119.15	9,651.00
	Kerb	m	81.00	276.89	22,428.00
	Concrete kerb crossings, [Type TGSI]	each	2.00	3,600.00	7,200.00
	Base	m3	120.00	342.36	41,083.00
	Preparation of the existing surface	m2	800.00	2.89	2,312.00
	Prime @ 1 I/m2	litre	800.00	5.39	4,312.0
	Heavy duty dense graded asphalt in surfacing course, AC	tonne	96.00	461.78	44,331.0
	[nominal size] H mix	m2	20.00	070.40	
	Footpath Tanasil and turf	m2	29.00	376.18	10,909.0
	Topsoil and turf	m2	60.00	91.32	5,479.0
	Kerb build outs	m2	5.00	3,931.90	19,660.0
	Linemarking	item	1.00	813.00	813.0
	Sign R1-1B	no	1.00	502.00	502.0
	Sign R2-3LA	no	1.00	485.00	485.0

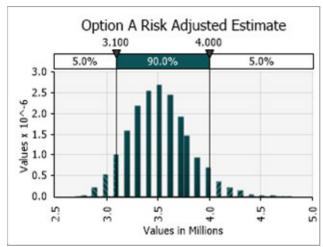
_	Traffic controllers	day	13.00	2,392.90	31,108
					306,444
	Tabilban Street Extension				
	Clearing & grubbing	m2	3,900.00	28.06	109,434
	Stripping of topsoil	m3	390.00	113.67	44,331
	Ground surface treatment under embankment	m2	3,900.00	8.16	31,824
	Road excavation	m3	1,800.00	87.54	157,572
	Rock Ripping	m3	270.00	92.25	24,908
	Road embankment using general fill material from all sources	m3	4,050.00	162.73	659,05
	Subgrade in cuttings, subgrade treatment Type A, compact existing	m2	2,600.00	6.71	17,44
	Subbase	m3	390.00	180.33	70,32
	Subsoil drains, Type B	m	390.00	84.03	32,77
	Kerb	m	390.00	169.09	65,94
	Base	m3	390.00	221.73	86,47
	Preparation of the existing surface	m2	2,400.00	2.89	6,93
	Prime @ 1 I/m2	litre	2,400.00	5.39	12,93
	Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix	tonne	288.00	461.78	132,99
	New Footpath	m2	585.00	262.35	153,47
	Supply and installation of reinforced concrete pipe components, Class X, 375mm diameter	m	58.50	516.59	30,22
	Supply and installation of reinforced concrete pipe components, Class X, 450mm diameter	m	58.50	576.47	33,72
	Supply and installation of reinforced concrete pipe components, Class X, 525mm diameter	m	39.00	691.15	26,95
	Supply and installation of reinforced concrete pipe components, Class X, 600mm diameter	m	19.50	826.70	16,12
	Supply and installation of reinforced concrete pipe components, Class X, 675mm diameter	m	19.50	843.10	16,4
	Construct new side inlet gully on grade, cast in-situ (2400mm lintel) (2+ sites)	No	6.00	5,661.00	33,9
	Precast concrete end structures	each	1.00	4,718.00	4,7
	Dump Rock Protection, Rock Outlet Protection	m2	6.00	371.20	2,2
l l	Retaining Walls				
	Concrete retaining wall, concrete in footing	m3	80.00	4,173.35	333,80
	Concrete retaining wall, concrete in wall	m3	60.00	4,362.65	261,7
	Concrete retaining wall, steel reinforcing bar @ 180kg/m3	tonne	25.20	7,972.27	200,9
	Topsoil and turf	m2	1,170.00	67.22	78,6
	Linemarking	item	1.00	11,188.00	11,1
	Culdesac				
	Ground surface treatment under embankment	m2	470.00	9.44	4,4
	Road excavation	m3	235.00	88.60	20,8
	Subgrade in cuttings, subgrade treatment Type A, compact existing	m2	470.00	8.50	3,9
	Subbase	m3	70.00	215.08	15,0
	Subsoil drains, Type B	m	79.00	89.85	7,0
	Kerb	m	79.00	236.21	18,60
_	Base	m3	70.00	252.68	17,68
	Preparation of the existing surface	m2	422.00	2.89	1,2
	Prime @ 1 l/m2	litre	422.00	5.39	2,2
	Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix	tonne	50.64	461.78	23,38
_	Topsoil and turf	m2	237.00	72.74	17,23
_	New Footpath	m2	53.00	362.81	19,23
	Traffic controllers	day	80.00	716.10	57,28
	Traine Controllers	uay	00.00	7 10.10	2,865,55
	Intersection of Reserve Street and Ocean Parade				2,000,00
	As per existing				
	IDS VELENSIIIU	1	1 1	I	

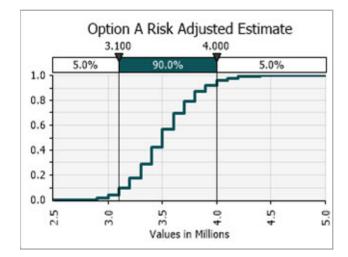

8	Reserve Street				
	As per existing				0.00
					0.00
9	Tabilban Street between Reserve Street and Pindari Avenue				
	Removal of concrete footpath - narrow section	m2	84.00	69.83	5,866.00
	New Footpath - 2.5m wide shared path	m2	350.00	298.16	104,356.00
	Traffic controllers	day	9.00	1,230.00	11,070.00
					121,292.00
10	Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue				
Option 1	Minor intersection reconfiguration to improve active transport access and improve safety.				
	Removal or demolition of concrete kerb	m	73.00	75.82	5,535.00
	Kerb buildouts	m	84.00	250.30	21,025.00
	Topsoil and turf buildouts	m2	179.00	128.99	23,089.00
	Footpath	m2	22.00	398.20	8,760.00
	Concrete kerb crossings, [Type TGSI]	each	1.00	4,127.00	4,127.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	6,053.00	6,053.00
	Linemarking	item	1.00	1,347.00	1,347.00
	Traffic controllers	day	4.00	2,473.00	9,892.00
					79,828.00
11	Intersection of Tabilban Street and Parnoo Avenue				
	This has been assumed to be the intersection with Tawarri				
	Crescent				
	Removal or demolition of concrete kerb	m	23.00	103.40	
	Kerb buildouts	m	25.00	254.43	6,361.00
	Topsoil and turf buildouts	m2	41.00	219.78	9,011.00
	Removal of concrete footpath	m2	40.00	88.20	3,528.00
	Footpath	m2	45.00	352.73	15,873.00
	Concrete kerb crossings, [Type TGSI]	each	1.00	4,128.00	4,128.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	6,053.00	6,053.00
	Linemarking	item	1.00	1,347.00	1,347.00
	Traffic controllers	day	3.00	2,511.00	7,533.00 56,212.00
12	Intersection of Tabilban Street and Ikkina Road				30,212.00
	Minor intersection reconfiguration to improve active				
	transport access and improve safety.				
	Removal or demolition of concrete kerb	m	15.00	158.50	2,378.00
	Kerb buildouts	m	22.00	259.90	5,718.00
	Topsoil and turf buildouts	m2	34.00	251.83	8,562.00
	New Islands	m2	108.00	669.80	72,338.00
	Linemarking	item	1.00	1,732.00	1,732.00
	Sign R1-2A	no	1.00	501.00	501.00
	Sign R2-3LA	no	4.00	485.00	1,940.00
	Sign D4-1-2B	no	1.00	528.00	528.00
	Traffic controllers	day	7.00	2,423.40	16,964.00
					110,661.00
13	Full length of through route				
	Sign R1-1B	no	3.00	897.00	2,691.00
					2,691.00
	Total for Project				6,664,892.00

	In the second se				
Item #	Description	Unit	Quantity	Unit Rate	Amount
1	Intersection of West Burleigh Road and Tabilban Street				
	Extended median with cut throughs Traffic island	m2	25.00	1,164.15	29,104.00
	Concrete kerb crossings, [Type TGSI]	each	3.00	4,353.00	13,059.00
	Median nose and extension	m2	19.00	1,579.90	30,018.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	7,229.00	7,229.00
	Linemarking	item	1.00	1,426.00	1,426.00
	Traffic controllers	day	7.00	3,742.10	26,195.00
		,			107,031.00
2	Tabilban Street between West-Burleigh Road and Wairoo Street				
	As per existing				
					0.00
3	Intersection of Tabilban Street and Wairoo Street				
	Removal of concrete footpath	m2	38.00	108.65	4,129.00
<u> </u>	Removal of existing island	m2	5.00	432.40	2,162.00
<u> </u>	Removal of kerb crossing	each	2.00	955.00	1,910.00
	Footpath	m2	48.00	408.62	19,614.00
	Concrete kerb crossings, [Type TGSI]	each	2.00	4,299.00	8,598.00
	Kerb Build outs and nose				
	Removal or demolition of concrete kerb	m	15.00	189.30	2,840.00
<u> </u>	Median nose and buildouts	m2	17.00	1,919.10	32,625.00
<u> </u>	Mountable Island	m2	28.00	802.72	22,476.00
<u> </u>	Linemarking Sign R1-3B	item no	1.00 3.00	11,640.00 650.00	11,640.00 1,950.00
	 				· · · · · · · · · · · · · · · · · · ·
<u> </u>	Sign R2-3LA Sign D4-1-2B	no no	2.00 1.00	579.00 631.00	1,158.00 631.00
	Topsoil and turf	m2	40.00	142.94	5,718.00
	Traffic controllers	day	8.00	1,476.40	11,811.00
	Tranic controllers	uay	8.00	1,470.40	127,262.00
4	Intersection of Tabilban Street and Koel Street				127,202.00
_	Blister kerb	m2	13.00	2,047.60	26,619.00
	Linemarking	item	1.00	2,110.00	2,110.00
	Sign D4-1-2B	no	2.00	631.00	1,262.00
	Sign G9-40-1A	no	2.00	645.00	1,290.00
	Traffic controllers	day	4.00	1,545.00	6,180.00
					37,461.00
5	Intersection of Tabilban Street and Ocean Parade				
	Removal or demolition of concrete kerb	m	27.00	105.18	2,840.00
	Kerb build outs	m2	36.00	1,332.53	47,971.00
	Linemarking	item	1.00	2,392.00	2,392.00
	Sign D4-1-2B	no	1.00	631.00	631.00
	Sign R1-2A	no	1.00	598.00	598.00
	Sign R2-3LA	no	2.00	579.00	1,158.00
	Sign tc1790	no	1.00	10,116.00	10,116.00
	Traffic controllers	day			•
			4.00	2,394.00	9,576.00
6			4.00	2,394.00	•
	Tabilban Street Extension		4.00	2,394.00	9,576.00
	Tabilban Street Extension Not applicable		4.00	2,394.00	9,576.00 75,282.00
7	Not applicable		4.00	2,394.00	9,576.00
7	Not applicable Intersection of Reserve Street and Ocean Parade		4.00	2,394.00	9,576.00 75,282.00
7	Not applicable		4.00	2,394.00	9,576.00 75,282.00 0.00
7	Not applicable Intersection of Reserve Street and Ocean Parade As per existing		4.00	2,394.00	9,576.00 75,282.00
7	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street		4.00	2,394.00	9,576.00 75,282.00 0.00
7 8	Not applicable Intersection of Reserve Street and Ocean Parade As per existing		4.00	2,394.00	9,576.00 75,282.00 0.00
	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing		4.00	2,394.00	9,576.00 75,282.00 0.00
9	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue		4.00	2,394.00	9,576.00 75,282.00 0.00
	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing		4.00	2,394.00	9,576.00 75,282.00 0.00 0.00
9	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section		4.00	2,394.00	9,576.00 75,282.00 0.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue	m2	84.00		9,576.00 75,282.00 0.00 0.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section	m2 m2	84.00	83.38	9,576.00 75,282.00 0.00 0.00 0.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave				9,576.00 75,282.00 0.00 0.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path	m2	84.00 350.00	83.38 356.05	9,576.00 75,282.00 0.00 0.00 0.00 7,004.00 124,618.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump	m2 no	84.00 350.00 1.00	83.38 356.05 11,603.00 1,293.61	9,576.00 75,282.00 0.00 0.00 0.00 7,004.00 124,618.00 11,603.00
9 9a	Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands	m2 no m2	84.00 350.00 1.00 31.00	83.38 356.05 11,603.00 1,293.61	9,576.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 11,603.00 40,102.00 29,689.00
9 9a	Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands Linemarking	m2 no m2 item	84.00 350.00 1.00 31.00	83.38 356.05 11,603.00 1,293.61 29,689.00	9,576.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 11,603.00 40,102.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands Linemarking Sign D4-6B	m2 no m2 item no	84.00 350.00 1.00 31.00 1.00 6.00	83.38 356.05 11,603.00 1,293.61 29,689.00 627.10	9,576.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 11,603.00 40,102.00 29,689.00 3,763.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands Linemarking Sign D4-6B Sign R1-3B	m2 no m2 item no no	84.00 350.00 1.00 31.00 6.00 1.00	83.38 356.05 11,603.00 1,293.61 29,689.00 627.10 650.00	9,576.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 11,603.00 40,102.00 29,689.00 3,763.00 650.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands Linemarking Sign D4-6B Sign R1-3B Sign R2-3LA	m2 no m2 item no no	84.00 350.00 1.00 31.00 1.00 6.00 1.00	83.38 356.05 11,603.00 1,293.61 29,689.00 627.10 650.00 579.00	9,576.00 75,282.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 40,102.00 29,689.00 3,763.00 650.00 1,737.00 1,262.00 10,117.00
9 9a	Not applicable Intersection of Reserve Street and Ocean Parade As per existing Reserve Street As per existing Tabilban Street between Reserve Street and Pindari Avenue New Reserve Path Section Works between Reserve St and Pindari Ave Removal of concrete footpath - narrow section New Footpath - 2.5m wide shared path New Road Hump New Islands Linemarking Sign D4-6B Sign R1-3B Sign R2-3LA Sign D4-1-2B	m2 no m2 item no no no	84.00 350.00 1.00 31.00 1.00 6.00 1.00 3.00 2.00	83.38 356.05 11,603.00 1,293.61 29,689.01 650.00 579.00 631.00 10,117.00 610.00	9,576.00 75,282.00 75,282.00 0.00 0.00 0.00 0.00 7,004.00 124,618.00 40,102.00 29,689.00 3,763.00 653.00 1,737.00 1,262.00 10,117.00

26/08/2022

	- cc	T.	1 1100		22.257.20
	Traffic controllers	day	14.00	1,446.90	20,257.00
					253,322.00
10	Intersection of Tabilban Street / Pindari Avenue and Djerral Avenue				
Option 1	Minor intersection reconfiguration to improve active transport access and improve		72.00	22.54	5 500 00
	Removal or demolition of concrete kerb	m	73.00	90.54	6,609.00
	Kerb buildouts	m	84.00	298.89	25,107.00
	Topsoil and turf buildouts	m2	179.00	154.03	27,571.00
	Footpath	m2	22.00	475.60	10,463.00
	Concrete kerb crossings, [Type TGSI]	each	1.00	4,929.00	4,929.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	7,229.00	7,229.00
	Linemarking	item	1.00	1,608.00	1,608.00
	Traffic controllers	day	4.00	2,953.00	11,812.00
					95,328.00
11	Intersection of Tabilban Street and Parnoo Avenue				
	This has been assumed to be the intersection with Tawarri Crescent				
	Removal or demolition of concrete kerb	m	23.00	123.50	2,841.00
	Kerb buildouts	m	25.00	303.82	7,596.00
	Topsoil and turf buildouts	m2	41.00	262.45	10,760.00
	Removal of concrete footpath	m2	40.00	105.33	4,213.00
	Footpath	m2	45.00	421.21	18,954.00
	Concrete kerb crossings, [Type TGSI]	each	1.00	4,929.00	4,929.00
	Cut in Concrete kerb crossings, [Type TGSI]	each	1.00	7,229.00	7,229.00
	Linemarking	item	1.00	1,608.00	1,608.00
	Traffic controllers	day	3.00	2,999.00	8,997.00
					67,127.00
12	Intersection of Tabilban Street and Ikkina Road				
Option 1	Minor intersection reconfiguration to improve active transport access and improve				
					0.00
Option 2	Provision of a roundabout				
	Removal of existing speed hump	m2	55.00	217.31	11,952.00
	Asphalt patching where islands removed	m2	55.00	449.67	24,732.00
	Asphalt patching where islands removed New Islands	m2 m2	55.00 30.00	449.67 1,171.36	24,732.00 35,141.00
	Asphalt patching where islands removed New Islands Mountable Island	m2 m2 m2	55.00 30.00 79.00	449.67 1,171.36 593.89	24,732.00 35,141.00 46,917.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking	m2 m2 m2 item	55.00 30.00 79.00 1.00	449.67 1,171.36 593.89 5,732.00	24,732.00 35,141.00 46,917.00 5,732.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B	m2 m2 m2 item	55.00 30.00 79.00 1.00 3.00	449.67 1,171.36 593.89 5,732.00 650.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA	m2 m2 m2 item no	55.00 30.00 79.00 1.00 3.00 1.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B	m2 m2 m2 item no no	55.00 30.00 79.00 1.00 3.00 1.00 3.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B	m2 m2 m2 item no	55.00 30.00 79.00 1.00 3.00 1.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works	m2 m2 m2 item no no no	55.00 30.00 79.00 1.00 3.00 1.00 3.00 3.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb	m2 m2 m2 item no no no	55.00 30.00 79.00 1.00 3.00 1.00 3.00 3.00 2,427.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION)	m2 m2 m2 item no no no no m0 m0 m1	55.00 30.00 79.00 1.00 3.00 1.00 3.00 3.00 2,427.00 182.03	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation	m2 m2 m2 item no no no no m0 m m m3 m3	55.00 30.00 79.00 1.00 3.00 1.00 3.00 3.00 2,427.00 182.03 728.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase	m2 m2 m2 item no no no no mo m m m3 m3 m3	55.00 30.00 79.00 1.00 3.00 1.00 3.00 3.00 2,427.00 182.03 728.00 364.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B	m2 m2 m2 item no no no no m0 m m m3 m3	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb	m2 m2 m2 item no no no no m m m3 m3 m3 m m	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B	m2 m2 m2 item no no no no m m m3 m3 m3 m	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb	m2 m2 m2 item no no no no m m m3 m3 m3 m m	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 313.00 364.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 l/m2	m2 m2 m2 m2 item n0 n0 n0 n0 m m m3 m3 m3 m4 m m m3 m1 m1 m2 litre	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 313.00 364.00 2,348.00 2,348.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 31,544.00 58,672.00 106,692.00 8,101.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 I/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix	m2 m2 m2 m2 item no no no no m m m3 m3 m3 m m m m m1 m2 litre tonne	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 313.00 364.00 2,348.00 2,348.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 l/m2	m2 m2 m2 m2 item n0 n0 n0 n0 m m m3 m3 m3 m4 m m m3 m1 m1 m2 litre	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 313.00 364.00 2,348.00 2,348.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 155,371.00 115,969.00
	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1-B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 l/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers	m2 m2 m2 m2 item no no no no m m m3 m3 m3 m m m m m1 m2 litre tonne	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 313.00 364.00 2,348.00 2,348.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 155,371.00 115,969.00
13	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1-8 Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 I/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers	m2 m2 m2 m2 item no no no no no m m m3 m3 m3 m3 m4 m m m day	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 364.00 2,348.00 2,348.00 2,348.00 2,348.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43 2,828.52	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 115,969.00 1,071,821.00
13	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 l/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers Full length of through route Sign R1-1B	m2 m2 m2 m2 item no no no no no m m m3 m3 m3 m3 m3 m4 m1 m day	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 364.00 2,348.00 2,348.00 2,348.00 2,348.00 31.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43 2,828.52	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 155,371.00 115,969.00 1,071,821.00
13	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 I/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers Full length of through route Sign R1-1B Linemarking	m2 m2 m2 m2 item no no no no no m m m3 m3 m3 m3 m m m am m day litre tonne day no item	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 364.00 2,348.00 2,348.00 2,348.00 281.76 41.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43 2,828.52	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 115,969.00 1,071,821.00 3,216.00 3,302.00
13	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign B4-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 l/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers Full length of through route Sign R1-1B	m2 m2 m2 m2 item no no no no no m m m3 m3 m3 m3 m3 m4 m m day	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 364.00 2,348.00 2,348.00 2,348.00 2,348.00 31.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43 2,828.52	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 115,969.00 1,071,821.00 3,216.00 3,302.00 1,958.00
13	Asphalt patching where islands removed New Islands Mountable Island Linemarking Sign R1-3B Sign R2-3LA Sign D4-1-2B Sign R1-1B Additional items to allow for pavement reinstatement to limit of works Removal or demolition of concrete kerb Road excavation, all materials (PROFILER OPERATION) Road excavation Subbase Subsoil drains, Type B Kerb Base Preparation of the existing surface Prime @ 1 I/m2 Heavy duty dense graded asphalt in surfacing course, AC [nominal size] H mix Traffic controllers Full length of through route Sign R1-1B Linemarking	m2 m2 m2 m2 item no no no no no m m m3 m3 m3 m3 m m m am m day litre tonne day no item	55.00 30.00 79.00 1.00 3.00 1.00 3.00 2,427.00 182.03 728.00 364.00 313.00 364.00 2,348.00 2,348.00 2,348.00 281.76 41.00	449.67 1,171.36 593.89 5,732.00 650.00 579.00 631.00 599.00 83.20 298.71 125.28 280.71 100.78 187.45 293.11 3.45 6.43 551.43 2,828.52	24,732.00 35,141.00 46,917.00 5,732.00 1,950.00 579.00 1,893.00 1,797.00 201,926.00 54,373.00 91,204.00 102,178.00 31,544.00 58,672.00 106,692.00 8,101.00 15,098.00 115,969.00 1,071,821.00 3,216.00 3,302.00


APPENDIX BRISK REPORTS



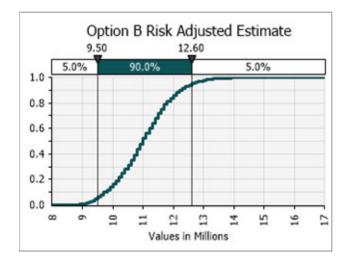
Option A Risk Estimate

Report: Compact Output Report
Performed By: Rod Cossor Consulting
Date: Wednesday, 24 August 2022

Summary Statistics	
Statistic	Value
Minimum	2,700,000.00
Maximum	4,800,000.00
Mean	3,519,790.00
Std. Deviation	290,285.69
Variance	8.427E+010
Skewness	0.3689
Kurtosis	3.1432
Median	3,500,000.00
Mode	3,500,000.00
Left X	3,100,000.00
Left P	5%
Right X	4,000,000.00
Right P	95%



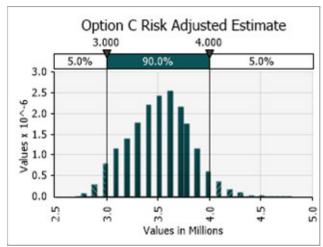
Percentiles		
Percentile	Value	
1%	2,900,000.00	
2.5%	3,000,000.00	
5%	3,100,000.00	
10%	3,200,000.00	
20%	3,300,000.00	
25%	3,300,000.00	
50%	3,500,000.00	
75%	3,700,000.00	
80%	3,800,000.00	
90%	3,900,000.00	
95%	4,000,000.00	
97.5%	4,100,000.00	
99%	4,300,000.00	



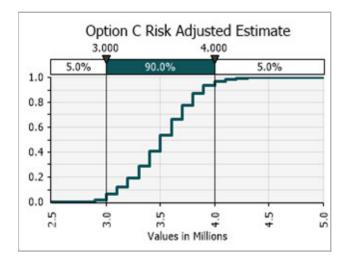
Option B Risk Adjusted Estimate

Report: Compact Output Report
Performed By: Rod Cossor Consulting
Date: Friday, 19 August 2022

Summary Statistics		
Statistic	Value	
Minimum	8,300,000.00	
Maximum	16,300,000.00	
Mean	11,020,740.00	
Std. Deviation	962,266.31	
Variance	9.260E+011	
Skewness	0.2846	
Kurtosis	3.2394	
Median	11,000,000.00	
Mode	10,800,000.00	
Left X	9,500,000.00	
Left P	5%	
Right X	12,600,000.00	
Right P	95%	

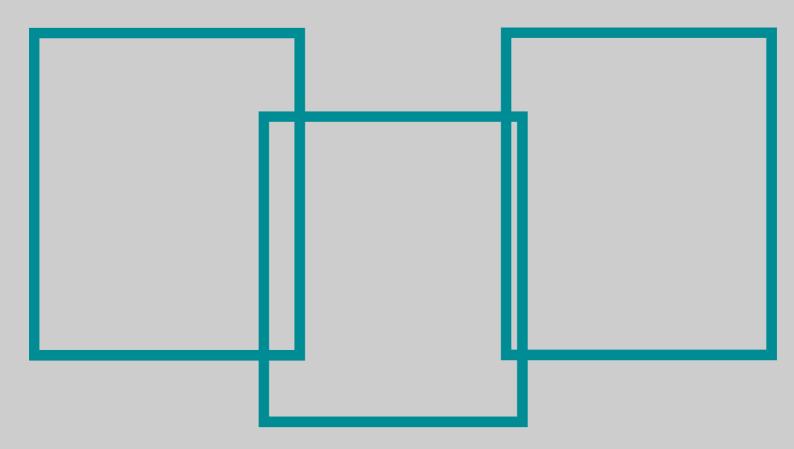


Percentiles	
Percentile	Value
1%	9,100,000.00
2.5%	9,300,000.00
5%	9,500,000.00
10%	9,700,000.00
20%	10,200,000.00
25%	10,400,000.00
50%	11,000,000.00
75%	11,600,000.00
80%	11,800,000.00
90%	12,300,000.00
95%	12,600,000.00
97.5%	13,000,000.00
99%	13,400,000.00



Option C Risk Adjusted Estimate

Report: Compact Output Report
Performed By: Rod Cossor Consulting
Date: Thursday, 25 August 2022



Summary Statistics		
Statistic	Value	
Minimum	2,700,000.00	
Maximum	4,800,000.00	
Mean	3,519,190.00	
Std. Deviation	296,832.54	
Variance	8.811E+010	
Skewness	0.0977	
Kurtosis	2.8053	
Median	3,500,000.00	
Mode	3,600,000.00	
Left X	3,000,000.00	
Left P	5%	
Right X	4,000,000.00	
Right P	95%	

Percentiles	
Percentile	Value
1%	2,900,000.00
2.5%	3,000,000.00
5%	3,000,000.00
10%	3,100,000.00
20%	3,300,000.00
25%	3,300,000.00
50%	3,500,000.00
75%	3,700,000.00
80%	3,800,000.00
90%	3,900,000.00
95%	4,000,000.00
97.5%	4,100,000.00
99%	4,200,000.00

APPENDIX C PEER REVIEW REPORT

Peer Review Report

PROJECT TITLE	Capital Cost Estimate Report For Koala Park Concept Study
PROJECT REFERENCE/S	N/A
CLIENT NAME	City Of Gold Coast

ITEM	DESCRIPTION	YES	NO	N/A	COMMENTS
1	ESTIMATE				
1.1	What is the class of estimate, is it appropriate for the detail and does it conform with the Cost Estimation guideline requirements?	×			
1.2	Has the Expert file been checked against the provided BoQ (Description / Quantities)?	X			
1.3	Have subcontract prices been benchmarked and deemed acceptable?	X			
1.4	Have material transport / haulage distances been considered?			X	
1.5	Have productivities used in the estimate been checked?	×			
1.6	Have the direct cost estimates been reviewed and closed out?	X			
2	INDIRECT COSTS				
2.1	What margin and overhead has been included, does it reflect market forces?	X			18% and 19 – 32%
2.2	Is the project management team allocated sufficient for the project?	X			
2.3	Have adequate insurances been included?	×			
2.4	Are the project site offices appropriate for the project?	×			
3	RISK REVIEW				
3.1	How complex is the project and has this been factored into the estimate?	X			Medium Complexity. Civil works. Adequately covered.
3.2	Have any influential materials that may negatively affect the project been identified?	X			Yes, Current Asphalt rates included
3.3	What is the predicted weather for the construction period and is there adequate inclement weather allowance?	X			2 Weeks
3.4	What are the anticipated ground conditions and how will this affect productivity?	X			Rock at highest elevation. Rock allowance included.
3.5	Are fire ants, acid sulphate soil, contaminated soil present on site?			\boxtimes	Unknown
3.6	Are there sufficient environmental controls included?	×			
3.7	Are there site access issues?	×			Traffic controls covered.
3.8	PUP conflicts / relocations?		X		
3.9	Is the risk allocation adequate?	X			
3.10	Any other risks that have influenced the estimate?			X	
4	RESOURCING AND PLANT				
4.1	Any perceived issues acquiring labour and resources?		X		

VERSION	APPROVED BY	REVIEWER/S	LAST REVIEWED
1	Principal Civil Estimator	Senior Project Engineer/Estimator	January 2022

4.2	What labour and resource rates are being used?	×			Current market rates
4.3	Have all labour and resource rates being used?	X			Current market rates
4.4	Have all labour and resource rates been confirmed for the project?	X			Current market rates
4.5	is FIFO / DIDO required?			×	
4.6	Accommodation location / type / rate?			\boxtimes	
4.7	Roster (Days per week / Hrs per day)?	\boxtimes			Standard 5 day weeks
4.8	Has LAFA been allocated?			×	
5	CONSTRUCTABILITY AND PROGRAM				
5.1	Has a site visit been undertaken to understand site constraints?	X			
5.2	Has a construction methodology been developed and reviewed by an RPEQ?		X		
5.3	Has staging diagrams being developed?		\times		
5.4	Has a program been developed that reflects the construction methodology and staging diagrams?		X		
6	ASSUMPTIONS AND CLARIFICATIONS				
6.1	Have all the conditions and exclusions applicable to the estimate been identified and included?	×			
7	PROCUREMENT				
7.1	Have subcontractor quotes been obtained for influential materials and specialist works?		X		
7.2	Does the quoted maintenance period conform with contract documents?			\boxtimes	
8	DELIVERABLES				
8.1	Have all RFI's been satisfactorily resolved with the Client?	×			
8.2	Is a program required, has it been checked against the estimate?		X		
8.3	Does the cashflow reflect the program?			×	
8.4	Have the correct escalation figures been used?			×	
8.5	Has a Monte Carlo simulation been produced?	X			
9	PRINCIPAL COSTS				
9.1	Have principals' costs been provided?		\boxtimes		
9.2	If benchmarked ranges used, have all stages been incorporated?	X			
9.3	Have all principal supplied materials and obligations been included?			×	
9.4	Any other principals cost?		X		
10	OTHER				
10.1	Have quotes been received for the management of utility services?			X	

VERSION	APPROVED BY	REVIEWER/S	LAST REVIEWED
1	Principal Civil Estimator	Senior Project Engineer/Estimator	January 2022

PREPARED BY	– Principal Civil Estimator	DATE	11/08/2022
REVIEWED BY	– Senior Project Engineer/Estimator	DATE	11/08/2022

VERSION	APPROVED BY	REVIEWER/S	LAST REVIEWED
1	Principal Civil Estimator	Senior Project Engineer/Estimator	January 2022

ROD COSSOR CONSULTING PTY LTD

ABN 81 681 746 571

rcossorconsult@optusnet.com M 0400 022 695 **F** 07 3200 3831

126 Waterford-Tamborine Road Waterford, Queensland 4133

